Properties

Label 2-3808-1.1-c1-0-5
Degree $2$
Conductor $3808$
Sign $1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·3-s − 2.69·5-s − 7-s + 3.24·9-s + 3.96·11-s − 0.387·13-s + 6.74·15-s − 17-s − 4.75·19-s + 2.49·21-s − 0.353·23-s + 2.28·25-s − 0.618·27-s − 9.19·29-s + 3.98·31-s − 9.91·33-s + 2.69·35-s + 5.51·37-s + 0.967·39-s − 8.86·41-s − 10.8·43-s − 8.76·45-s + 11.1·47-s + 49-s + 2.49·51-s − 5.13·53-s − 10.7·55-s + ⋯
L(s)  = 1  − 1.44·3-s − 1.20·5-s − 0.377·7-s + 1.08·9-s + 1.19·11-s − 0.107·13-s + 1.74·15-s − 0.242·17-s − 1.09·19-s + 0.545·21-s − 0.0737·23-s + 0.457·25-s − 0.118·27-s − 1.70·29-s + 0.716·31-s − 1.72·33-s + 0.456·35-s + 0.906·37-s + 0.154·39-s − 1.38·41-s − 1.64·43-s − 1.30·45-s + 1.62·47-s + 0.142·49-s + 0.349·51-s − 0.705·53-s − 1.44·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3907533864\)
\(L(\frac12)\) \(\approx\) \(0.3907533864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + 2.49T + 3T^{2} \)
5 \( 1 + 2.69T + 5T^{2} \)
11 \( 1 - 3.96T + 11T^{2} \)
13 \( 1 + 0.387T + 13T^{2} \)
19 \( 1 + 4.75T + 19T^{2} \)
23 \( 1 + 0.353T + 23T^{2} \)
29 \( 1 + 9.19T + 29T^{2} \)
31 \( 1 - 3.98T + 31T^{2} \)
37 \( 1 - 5.51T + 37T^{2} \)
41 \( 1 + 8.86T + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 - 11.1T + 47T^{2} \)
53 \( 1 + 5.13T + 53T^{2} \)
59 \( 1 + 9.89T + 59T^{2} \)
61 \( 1 + 9.79T + 61T^{2} \)
67 \( 1 + 2.62T + 67T^{2} \)
71 \( 1 - 12.5T + 71T^{2} \)
73 \( 1 + 8.73T + 73T^{2} \)
79 \( 1 - 7.03T + 79T^{2} \)
83 \( 1 + 7.21T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 - 7.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454237865587634691088701061644, −7.61102742352676966019190274352, −6.81581481757065827725694956710, −6.35938098689077236868360343295, −5.61397616102147282796919758556, −4.57350507496847517440348404183, −4.12906106194391031114378340207, −3.24711950465633811094158661376, −1.68402542734146027172521200670, −0.39073425807401728711869271077, 0.39073425807401728711869271077, 1.68402542734146027172521200670, 3.24711950465633811094158661376, 4.12906106194391031114378340207, 4.57350507496847517440348404183, 5.61397616102147282796919758556, 6.35938098689077236868360343295, 6.81581481757065827725694956710, 7.61102742352676966019190274352, 8.454237865587634691088701061644

Graph of the $Z$-function along the critical line