Properties

Label 2-3808-1.1-c1-0-32
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64·3-s − 3.47·5-s + 7-s + 4.01·9-s − 3.20·11-s − 1.54·13-s + 9.19·15-s − 17-s + 0.0113·19-s − 2.64·21-s + 6.16·23-s + 7.04·25-s − 2.69·27-s − 5.20·29-s − 2.66·31-s + 8.47·33-s − 3.47·35-s + 3.06·37-s + 4.09·39-s − 2.97·41-s + 7.60·43-s − 13.9·45-s + 4.94·47-s + 49-s + 2.64·51-s − 0.535·53-s + 11.1·55-s + ⋯
L(s)  = 1  − 1.52·3-s − 1.55·5-s + 0.377·7-s + 1.33·9-s − 0.965·11-s − 0.428·13-s + 2.37·15-s − 0.242·17-s + 0.00261·19-s − 0.578·21-s + 1.28·23-s + 1.40·25-s − 0.518·27-s − 0.965·29-s − 0.478·31-s + 1.47·33-s − 0.586·35-s + 0.504·37-s + 0.656·39-s − 0.464·41-s + 1.15·43-s − 2.07·45-s + 0.721·47-s + 0.142·49-s + 0.370·51-s − 0.0735·53-s + 1.49·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + 2.64T + 3T^{2} \)
5 \( 1 + 3.47T + 5T^{2} \)
11 \( 1 + 3.20T + 11T^{2} \)
13 \( 1 + 1.54T + 13T^{2} \)
19 \( 1 - 0.0113T + 19T^{2} \)
23 \( 1 - 6.16T + 23T^{2} \)
29 \( 1 + 5.20T + 29T^{2} \)
31 \( 1 + 2.66T + 31T^{2} \)
37 \( 1 - 3.06T + 37T^{2} \)
41 \( 1 + 2.97T + 41T^{2} \)
43 \( 1 - 7.60T + 43T^{2} \)
47 \( 1 - 4.94T + 47T^{2} \)
53 \( 1 + 0.535T + 53T^{2} \)
59 \( 1 - 8.21T + 59T^{2} \)
61 \( 1 - 14.9T + 61T^{2} \)
67 \( 1 - 9.29T + 67T^{2} \)
71 \( 1 + 1.53T + 71T^{2} \)
73 \( 1 + 9.37T + 73T^{2} \)
79 \( 1 - 8.74T + 79T^{2} \)
83 \( 1 + 1.44T + 83T^{2} \)
89 \( 1 + 6.23T + 89T^{2} \)
97 \( 1 + 3.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.941271148735698316805286812745, −7.26605820629271744870427113779, −6.84756468064255934341972129224, −5.65205789945871388524645946898, −5.16841840605622511680180735647, −4.46514363856594506460521426989, −3.71213151463447537765040714096, −2.51267750702051329617440175156, −0.905558183652686095937116043584, 0, 0.905558183652686095937116043584, 2.51267750702051329617440175156, 3.71213151463447537765040714096, 4.46514363856594506460521426989, 5.16841840605622511680180735647, 5.65205789945871388524645946898, 6.84756468064255934341972129224, 7.26605820629271744870427113779, 7.941271148735698316805286812745

Graph of the $Z$-function along the critical line