Properties

Label 2-3808-1.1-c1-0-1
Degree $2$
Conductor $3808$
Sign $1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.582·3-s − 3.85·5-s − 7-s − 2.66·9-s − 4.64·11-s − 2.54·13-s − 2.24·15-s − 17-s − 6.76·19-s − 0.582·21-s + 6.10·23-s + 9.83·25-s − 3.29·27-s + 3.73·29-s − 0.0519·31-s − 2.70·33-s + 3.85·35-s − 10.1·37-s − 1.48·39-s − 5.63·41-s − 8.99·43-s + 10.2·45-s − 6.70·47-s + 49-s − 0.582·51-s + 8.65·53-s + 17.8·55-s + ⋯
L(s)  = 1  + 0.336·3-s − 1.72·5-s − 0.377·7-s − 0.886·9-s − 1.40·11-s − 0.706·13-s − 0.579·15-s − 0.242·17-s − 1.55·19-s − 0.127·21-s + 1.27·23-s + 1.96·25-s − 0.634·27-s + 0.694·29-s − 0.00932·31-s − 0.471·33-s + 0.650·35-s − 1.67·37-s − 0.237·39-s − 0.880·41-s − 1.37·43-s + 1.52·45-s − 0.978·47-s + 0.142·49-s − 0.0815·51-s + 1.18·53-s + 2.41·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3094178409\)
\(L(\frac12)\) \(\approx\) \(0.3094178409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 0.582T + 3T^{2} \)
5 \( 1 + 3.85T + 5T^{2} \)
11 \( 1 + 4.64T + 11T^{2} \)
13 \( 1 + 2.54T + 13T^{2} \)
19 \( 1 + 6.76T + 19T^{2} \)
23 \( 1 - 6.10T + 23T^{2} \)
29 \( 1 - 3.73T + 29T^{2} \)
31 \( 1 + 0.0519T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 + 5.63T + 41T^{2} \)
43 \( 1 + 8.99T + 43T^{2} \)
47 \( 1 + 6.70T + 47T^{2} \)
53 \( 1 - 8.65T + 53T^{2} \)
59 \( 1 + 0.380T + 59T^{2} \)
61 \( 1 - 4.49T + 61T^{2} \)
67 \( 1 - 1.65T + 67T^{2} \)
71 \( 1 + 4.35T + 71T^{2} \)
73 \( 1 - 4.29T + 73T^{2} \)
79 \( 1 - 9.48T + 79T^{2} \)
83 \( 1 - 15.7T + 83T^{2} \)
89 \( 1 + 10.7T + 89T^{2} \)
97 \( 1 + 9.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.504708590128670577854074880859, −7.898654341371264773762748271848, −7.11702342398126107518013229415, −6.53846479727663013626246762803, −5.19655664967236381065948114237, −4.79285062487045666522811837181, −3.68517672044222529327403898490, −3.08809053841196655082215872324, −2.29092901338734130014451993169, −0.29111587629453793691566558876, 0.29111587629453793691566558876, 2.29092901338734130014451993169, 3.08809053841196655082215872324, 3.68517672044222529327403898490, 4.79285062487045666522811837181, 5.19655664967236381065948114237, 6.53846479727663013626246762803, 7.11702342398126107518013229415, 7.898654341371264773762748271848, 8.504708590128670577854074880859

Graph of the $Z$-function along the critical line