L(s) = 1 | − i·2-s + 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s + i·8-s + 0.879·9-s − 0.347i·12-s + 1.53i·13-s − 1.87·14-s + 16-s + 1.53i·17-s − 0.879i·18-s + 19-s + 0.652·21-s + ⋯ |
L(s) = 1 | − i·2-s + 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s + i·8-s + 0.879·9-s − 0.347i·12-s + 1.53i·13-s − 1.87·14-s + 16-s + 1.53i·17-s − 0.879i·18-s + 19-s + 0.652·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.291711332\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.291711332\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 0.347iT - T^{2} \) |
| 7 | \( 1 + 1.87iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - 1.53iT - T^{2} \) |
| 17 | \( 1 - 1.53iT - T^{2} \) |
| 23 | \( 1 + 0.347iT - T^{2} \) |
| 29 | \( 1 - 1.53T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 + 1.87iT - T^{2} \) |
| 59 | \( 1 - 0.347T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.87iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.347iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.628772141754616521228898693634, −7.983864015536597103615952231344, −7.00586595845035920169874782566, −6.55723489656047666194578470404, −5.13963092104655695608803642847, −4.28286734584059575301441782150, −4.08534998682137289074036942399, −3.26243855383392873988199181001, −1.79346847256458088176360183646, −1.10111542941000778459311509088,
1.01377433896048908569933917576, 2.57143076711172609993740843198, 3.25072671516760740151367110473, 4.65903369123427239873299343629, 5.24956584965815805941144041444, 5.82001340988693124813812825338, 6.54916915498086581775923459920, 7.50130970473946703557784943950, 7.85065586960669102217776767492, 8.713636617434770567634382100038