Properties

Label 2-3800-760.189-c0-0-7
Degree $2$
Conductor $3800$
Sign $0.447 + 0.894i$
Analytic cond. $1.89644$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s + i·8-s + 0.879·9-s − 0.347i·12-s + 1.53i·13-s − 1.87·14-s + 16-s + 1.53i·17-s − 0.879i·18-s + 19-s + 0.652·21-s + ⋯
L(s)  = 1  i·2-s + 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s + i·8-s + 0.879·9-s − 0.347i·12-s + 1.53i·13-s − 1.87·14-s + 16-s + 1.53i·17-s − 0.879i·18-s + 19-s + 0.652·21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(1.89644\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (949, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :0),\ 0.447 + 0.894i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.291711332\)
\(L(\frac12)\) \(\approx\) \(1.291711332\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 0.347iT - T^{2} \)
7 \( 1 + 1.87iT - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 1.53iT - T^{2} \)
17 \( 1 - 1.53iT - T^{2} \)
23 \( 1 + 0.347iT - T^{2} \)
29 \( 1 - 1.53T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - iT - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 + iT - T^{2} \)
53 \( 1 + 1.87iT - T^{2} \)
59 \( 1 - 0.347T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.87iT - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 0.347iT - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.628772141754616521228898693634, −7.983864015536597103615952231344, −7.00586595845035920169874782566, −6.55723489656047666194578470404, −5.13963092104655695608803642847, −4.28286734584059575301441782150, −4.08534998682137289074036942399, −3.26243855383392873988199181001, −1.79346847256458088176360183646, −1.10111542941000778459311509088, 1.01377433896048908569933917576, 2.57143076711172609993740843198, 3.25072671516760740151367110473, 4.65903369123427239873299343629, 5.24956584965815805941144041444, 5.82001340988693124813812825338, 6.54916915498086581775923459920, 7.50130970473946703557784943950, 7.85065586960669102217776767492, 8.713636617434770567634382100038

Graph of the $Z$-function along the critical line