L(s) = 1 | + i·2-s + 1.87i·3-s − 4-s − 1.87·6-s + 1.53i·7-s − i·8-s − 2.53·9-s − 1.87i·12-s − 0.347i·13-s − 1.53·14-s + 16-s + 0.347i·17-s − 2.53i·18-s − 19-s − 2.87·21-s + ⋯ |
L(s) = 1 | + i·2-s + 1.87i·3-s − 4-s − 1.87·6-s + 1.53i·7-s − i·8-s − 2.53·9-s − 1.87i·12-s − 0.347i·13-s − 1.53·14-s + 16-s + 0.347i·17-s − 2.53i·18-s − 19-s − 2.87·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7156713648\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7156713648\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 1.87iT - T^{2} \) |
| 7 | \( 1 - 1.53iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 0.347iT - T^{2} \) |
| 17 | \( 1 - 0.347iT - T^{2} \) |
| 23 | \( 1 - 1.87iT - T^{2} \) |
| 29 | \( 1 + 0.347T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 + 1.53iT - T^{2} \) |
| 59 | \( 1 - 1.87T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.53iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.87iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.221520604104487920005824231461, −8.543981947821450636245373687629, −8.245347094212578758597246758267, −6.99228045358536013562765072263, −5.84698456209305793212209979752, −5.56950354908965130297355905090, −5.02982893561396890453227571808, −3.99365414189022273243799070410, −3.50683843871902413610775112285, −2.35101914896618355435565505983,
0.42637819116909785239484517734, 1.31404186641320955428549139283, 2.21520706055977960957688491061, 3.02063651519615724527946498287, 4.11195832858536234956969784778, 4.84987607834863039972593962780, 6.11115827613248193099251375563, 6.67104757455432379022198614489, 7.39930596895558060370200824587, 8.073465492646310916259054136405