L(s) = 1 | + 3.29i·3-s − 1.78i·7-s − 7.87·9-s − 5.08·11-s − 1.29i·13-s − 0.213i·17-s + 19-s + 5.89·21-s − 3.72i·23-s − 16.0i·27-s − 0.870·29-s − 16.7i·33-s + 2i·37-s + 4.27·39-s + 8.59·41-s + ⋯ |
L(s) = 1 | + 1.90i·3-s − 0.675i·7-s − 2.62·9-s − 1.53·11-s − 0.359i·13-s − 0.0517i·17-s + 0.229·19-s + 1.28·21-s − 0.776i·23-s − 3.09i·27-s − 0.161·29-s − 2.91i·33-s + 0.328i·37-s + 0.684·39-s + 1.34·41-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.142898191 |
L(21) |
≈ |
1.142898191 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−3.29iT−3T2 |
| 7 | 1+1.78iT−7T2 |
| 11 | 1+5.08T+11T2 |
| 13 | 1+1.29iT−13T2 |
| 17 | 1+0.213iT−17T2 |
| 23 | 1+3.72iT−23T2 |
| 29 | 1+0.870T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1−8.59T+41T2 |
| 43 | 1+3.67iT−43T2 |
| 47 | 1−4.65iT−47T2 |
| 53 | 1−11.0iT−53T2 |
| 59 | 1−4.70T+59T2 |
| 61 | 1−3.51T+61T2 |
| 67 | 1+1.12iT−67T2 |
| 71 | 1−8.76T+71T2 |
| 73 | 1−6.80iT−73T2 |
| 79 | 1+14.5T+79T2 |
| 83 | 1+9.74iT−83T2 |
| 89 | 1−6.76T+89T2 |
| 97 | 1+4.16iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.645238315829141040651353748430, −8.011016614926993063084647821514, −7.23023390637691402810923139053, −5.93837314938285479795521522476, −5.42774559470322649013999145821, −4.62215930456886154674755318837, −4.12452443222169320759764751278, −3.14327578219914648328075433019, −2.54285430051668785870194570838, −0.43633270999248396691422672889,
0.813819482521378409310606198258, 2.06849824965731914520627372508, 2.47746876956439835558153654184, 3.46891268047027817947593825152, 5.05764035846719257121564050303, 5.62708923985748856482085766401, 6.25877460940886423416976043402, 7.14400245054850604366597799711, 7.62961825898824289645098686927, 8.242831992292813961791070088434