Properties

Label 2-3800-5.4-c1-0-37
Degree $2$
Conductor $3800$
Sign $0.894 - 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.29i·3-s − 1.78i·7-s − 7.87·9-s − 5.08·11-s − 1.29i·13-s − 0.213i·17-s + 19-s + 5.89·21-s − 3.72i·23-s − 16.0i·27-s − 0.870·29-s − 16.7i·33-s + 2i·37-s + 4.27·39-s + 8.59·41-s + ⋯
L(s)  = 1  + 1.90i·3-s − 0.675i·7-s − 2.62·9-s − 1.53·11-s − 0.359i·13-s − 0.0517i·17-s + 0.229·19-s + 1.28·21-s − 0.776i·23-s − 3.09i·27-s − 0.161·29-s − 2.91i·33-s + 0.328i·37-s + 0.684·39-s + 1.34·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.142898191\)
\(L(\frac12)\) \(\approx\) \(1.142898191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 3.29iT - 3T^{2} \)
7 \( 1 + 1.78iT - 7T^{2} \)
11 \( 1 + 5.08T + 11T^{2} \)
13 \( 1 + 1.29iT - 13T^{2} \)
17 \( 1 + 0.213iT - 17T^{2} \)
23 \( 1 + 3.72iT - 23T^{2} \)
29 \( 1 + 0.870T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 8.59T + 41T^{2} \)
43 \( 1 + 3.67iT - 43T^{2} \)
47 \( 1 - 4.65iT - 47T^{2} \)
53 \( 1 - 11.0iT - 53T^{2} \)
59 \( 1 - 4.70T + 59T^{2} \)
61 \( 1 - 3.51T + 61T^{2} \)
67 \( 1 + 1.12iT - 67T^{2} \)
71 \( 1 - 8.76T + 71T^{2} \)
73 \( 1 - 6.80iT - 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 + 9.74iT - 83T^{2} \)
89 \( 1 - 6.76T + 89T^{2} \)
97 \( 1 + 4.16iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.645238315829141040651353748430, −8.011016614926993063084647821514, −7.23023390637691402810923139053, −5.93837314938285479795521522476, −5.42774559470322649013999145821, −4.62215930456886154674755318837, −4.12452443222169320759764751278, −3.14327578219914648328075433019, −2.54285430051668785870194570838, −0.43633270999248396691422672889, 0.813819482521378409310606198258, 2.06849824965731914520627372508, 2.47746876956439835558153654184, 3.46891268047027817947593825152, 5.05764035846719257121564050303, 5.62708923985748856482085766401, 6.25877460940886423416976043402, 7.14400245054850604366597799711, 7.62961825898824289645098686927, 8.242831992292813961791070088434

Graph of the $Z$-function along the critical line