Properties

Label 2-3800-5.4-c1-0-28
Degree $2$
Conductor $3800$
Sign $-0.894 - 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.34i·3-s + 1.19i·7-s − 2.48·9-s + 4.97·11-s + 6.63i·13-s + 1.48i·17-s − 19-s − 2.80·21-s + 0.510i·23-s + 1.19i·27-s + 7.88·29-s − 2.97·31-s + 11.6i·33-s − 7.14i·37-s − 15.5·39-s + ⋯
L(s)  = 1  + 1.35i·3-s + 0.452i·7-s − 0.829·9-s + 1.50·11-s + 1.84i·13-s + 0.361i·17-s − 0.229·19-s − 0.611·21-s + 0.106i·23-s + 0.230i·27-s + 1.46·29-s − 0.534·31-s + 2.03i·33-s − 1.17i·37-s − 2.48·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.026733684\)
\(L(\frac12)\) \(\approx\) \(2.026733684\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2.34iT - 3T^{2} \)
7 \( 1 - 1.19iT - 7T^{2} \)
11 \( 1 - 4.97T + 11T^{2} \)
13 \( 1 - 6.63iT - 13T^{2} \)
17 \( 1 - 1.48iT - 17T^{2} \)
23 \( 1 - 0.510iT - 23T^{2} \)
29 \( 1 - 7.88T + 29T^{2} \)
31 \( 1 + 2.97T + 31T^{2} \)
37 \( 1 + 7.14iT - 37T^{2} \)
41 \( 1 - 1.66T + 41T^{2} \)
43 \( 1 - 6.39iT - 43T^{2} \)
47 \( 1 + 9.95iT - 47T^{2} \)
53 \( 1 - 11.4iT - 53T^{2} \)
59 \( 1 - 11.8T + 59T^{2} \)
61 \( 1 - 3.66T + 61T^{2} \)
67 \( 1 - 7.61iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 13.8iT - 73T^{2} \)
79 \( 1 + 12.6T + 79T^{2} \)
83 \( 1 - 8.68iT - 83T^{2} \)
89 \( 1 - 4.87T + 89T^{2} \)
97 \( 1 + 6.81iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.086879580592584972586523372325, −8.475673643458204871867374005814, −7.16453019012130466543084254740, −6.55690714016223374589213878630, −5.78854182948266722527228598940, −4.83092254224411634793128115011, −4.05963809433703045354104343816, −3.84189747281471888938144246313, −2.50850159937470630845207701855, −1.42479544875468443842243438656, 0.67022896519519713265701968297, 1.28158527650333582157824441116, 2.46380480121972654620512450713, 3.35688173548907410371942501612, 4.30813300771414593835423957170, 5.36999996758922189384965001058, 6.18166190694317414208385170469, 6.82283956249643727528146916485, 7.30790813403473850467993282873, 8.202334079826398577968530576789

Graph of the $Z$-function along the critical line