Properties

Label 2-3800-5.4-c1-0-14
Degree $2$
Conductor $3800$
Sign $-0.447 - 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53i·3-s − 2.22i·7-s + 0.652·9-s − 3.22·11-s − 1.57i·13-s + 3.53i·17-s − 19-s + 3.41·21-s − 4.47i·23-s + 5.59i·27-s − 1.92·29-s − 3.81·31-s − 4.94i·33-s + 11.3i·37-s + 2.41·39-s + ⋯
L(s)  = 1  + 0.884i·3-s − 0.841i·7-s + 0.217·9-s − 0.972·11-s − 0.436i·13-s + 0.856i·17-s − 0.229·19-s + 0.744·21-s − 0.933i·23-s + 1.07i·27-s − 0.356·29-s − 0.685·31-s − 0.860i·33-s + 1.86i·37-s + 0.386·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.264017469\)
\(L(\frac12)\) \(\approx\) \(1.264017469\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 1.53iT - 3T^{2} \)
7 \( 1 + 2.22iT - 7T^{2} \)
11 \( 1 + 3.22T + 11T^{2} \)
13 \( 1 + 1.57iT - 13T^{2} \)
17 \( 1 - 3.53iT - 17T^{2} \)
23 \( 1 + 4.47iT - 23T^{2} \)
29 \( 1 + 1.92T + 29T^{2} \)
31 \( 1 + 3.81T + 31T^{2} \)
37 \( 1 - 11.3iT - 37T^{2} \)
41 \( 1 - 3.47T + 41T^{2} \)
43 \( 1 - 1.69iT - 43T^{2} \)
47 \( 1 - 1.57iT - 47T^{2} \)
53 \( 1 - 7.12iT - 53T^{2} \)
59 \( 1 - 7.88T + 59T^{2} \)
61 \( 1 + 2.79T + 61T^{2} \)
67 \( 1 - 3.22iT - 67T^{2} \)
71 \( 1 + 4.38T + 71T^{2} \)
73 \( 1 - 6.41iT - 73T^{2} \)
79 \( 1 - 8.59T + 79T^{2} \)
83 \( 1 - 14.6iT - 83T^{2} \)
89 \( 1 + 6.10T + 89T^{2} \)
97 \( 1 - 15.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.710907953743594548335693663638, −8.030568300854238155044246102527, −7.34930903687002145175044611328, −6.53537049771155399373271033317, −5.61538747500184764903130206185, −4.82054973855726744032615481180, −4.18556044066584892034250921701, −3.47444658216284777387716226444, −2.46660618482711564104880725569, −1.12102964089180988767236663900, 0.39252220876828987987954635959, 1.84908699327760012402440808353, 2.37141159328834063770073817856, 3.45748708349848142013525935853, 4.54290047917719340508368898619, 5.47046918310414456331123327965, 5.94015549345399367899085072756, 7.05338695359205838625309327310, 7.37992334402623379471424678195, 8.129276986142996738183219079503

Graph of the $Z$-function along the critical line