L(s) = 1 | + (0.5 + 0.866i)2-s + (1 + 1.73i)3-s + (−0.499 + 0.866i)4-s + (−0.999 + 1.73i)6-s − 0.999·8-s + (−1.49 + 2.59i)9-s − 11-s − 1.99·12-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 3·18-s + 19-s + (−0.5 − 0.866i)22-s + (−1 − 1.73i)24-s − 4·27-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (1 + 1.73i)3-s + (−0.499 + 0.866i)4-s + (−0.999 + 1.73i)6-s − 0.999·8-s + (−1.49 + 2.59i)9-s − 11-s − 1.99·12-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 3·18-s + 19-s + (−0.5 − 0.866i)22-s + (−1 − 1.73i)24-s − 4·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.753540402\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.753540402\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.114906605203099348350691795048, −8.382015224424303578515150486612, −7.79762057789068554485671239146, −7.16848059185293088992999408260, −5.78220173039908980144772048898, −5.28638264262488928653287288893, −4.54594366836949936912247901336, −4.03281896099082884616828639694, −2.87706574796491818910088509642, −2.72319435301908874115882307727,
0.71116573236821241728007108736, 1.86938424870237193609413054733, 2.42421003802135871988035216899, 3.24833178938098261104631913211, 3.98462332578615772159293043261, 5.35735827146484612942498489823, 5.95113986075958895750743345774, 6.81476535246409485699317389686, 7.52537154744642913452819390419, 8.214388630660322052894054126541