L(s) = 1 | + (0.342 + 0.939i)2-s + (−0.766 + 0.642i)4-s + (−1.32 + 0.766i)7-s + (−0.866 − 0.500i)8-s + (0.939 + 0.342i)9-s + (0.939 − 1.62i)11-s + (0.984 − 0.173i)13-s + (−1.17 − 0.984i)14-s + (0.173 − 0.984i)16-s + i·18-s + (0.939 − 0.342i)19-s + (1.85 + 0.326i)22-s + (0.223 + 0.266i)23-s + (0.5 + 0.866i)26-s + (0.524 − 1.43i)28-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)2-s + (−0.766 + 0.642i)4-s + (−1.32 + 0.766i)7-s + (−0.866 − 0.500i)8-s + (0.939 + 0.342i)9-s + (0.939 − 1.62i)11-s + (0.984 − 0.173i)13-s + (−1.17 − 0.984i)14-s + (0.173 − 0.984i)16-s + i·18-s + (0.939 − 0.342i)19-s + (1.85 + 0.326i)22-s + (0.223 + 0.266i)23-s + (0.5 + 0.866i)26-s + (0.524 − 1.43i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.434531710\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.434531710\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
good | 3 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (1.32 - 0.766i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.984 + 0.173i)T + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.223 - 0.266i)T + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 0.347iT - T^{2} \) |
| 41 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.342 + 0.939i)T + (-0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.984 - 1.17i)T + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.0603 + 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.829905757269589809860931367512, −8.115010700093850905516033495186, −7.18301714958166691180698294125, −6.50028659185518790706407975402, −5.97872627227159333589546515521, −5.40532529897249968540355285485, −4.24489676176628078381684704960, −3.45233309881807747028732558078, −2.95830261580809088521850191848, −1.06351610639851759491848549362,
1.02515826655293376180756107969, 1.88485608154986027429513077359, 3.19996574208445011845688936744, 3.92595724022264818436026530327, 4.25987924244677246631321984233, 5.35522469890056691009817623294, 6.47463303416434809061154326665, 6.80483958023093188544392454453, 7.64131112177382238630409412537, 8.984131274526831981284482561799