L(s) = 1 | + (0.939 − 0.342i)2-s + (−0.266 + 1.50i)3-s + (0.766 − 0.642i)4-s + (0.266 + 1.50i)6-s + (0.500 − 0.866i)8-s + (−1.26 − 0.460i)9-s + (−0.766 + 1.32i)11-s + (0.766 + 1.32i)12-s + (0.173 − 0.984i)16-s + (1.87 − 0.684i)17-s − 1.34·18-s + (0.173 + 0.984i)19-s + (−0.266 + 1.50i)22-s + (1.17 + 0.984i)24-s + (0.266 − 0.460i)27-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (−0.266 + 1.50i)3-s + (0.766 − 0.642i)4-s + (0.266 + 1.50i)6-s + (0.500 − 0.866i)8-s + (−1.26 − 0.460i)9-s + (−0.766 + 1.32i)11-s + (0.766 + 1.32i)12-s + (0.173 − 0.984i)16-s + (1.87 − 0.684i)17-s − 1.34·18-s + (0.173 + 0.984i)19-s + (−0.266 + 1.50i)22-s + (1.17 + 0.984i)24-s + (0.266 − 0.460i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.102447773\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.102447773\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.173 - 0.984i)T \) |
good | 3 | \( 1 + (0.266 - 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-1.87 + 0.684i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (1.76 + 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.326 + 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.289165931608383071111764434265, −7.83786296659534332399894015220, −7.44589377671829500017087968194, −6.16804584422064722486882304729, −5.58004698720662338758040900864, −4.77454856969960233423241335878, −4.51786791022546050726692341993, −3.41579507485445526623998573046, −2.92995697128212972161041484612, −1.56978656524661406914173926497,
0.956308949984380190610881682794, 2.14661049649068149533747243579, 3.01734658281283502709430130126, 3.75925295809823066313639413377, 5.15200434434347178945456673992, 5.68384644973728031629369230449, 6.16837427989605134423301613210, 7.09415365738519213021655554667, 7.54076989017223937723669137483, 8.209955203676724815008982116220