L(s) = 1 | + (−0.923 − 0.382i)2-s + 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (−0.382 − 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (0.541 + 0.541i)12-s − 1.84·13-s + i·16-s + (0.382 + 0.158i)18-s − i·19-s + (−0.541 + 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s − 1.08·27-s + ⋯ |
L(s) = 1 | + (−0.923 − 0.382i)2-s + 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (−0.382 − 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (0.541 + 0.541i)12-s − 1.84·13-s + i·16-s + (0.382 + 0.158i)18-s − i·19-s + (−0.541 + 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s − 1.08·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4475939614\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4475939614\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 + 0.382i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 0.765T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + 1.84T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 0.765T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 0.765T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.41iT - T^{2} \) |
| 67 | \( 1 + 1.84T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 1.84iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.635646211470445520313143555663, −7.72992865645056296095989098670, −7.26392405593086597522988988069, −6.33095155164573700227583429306, −5.42222908942268707879390263925, −4.35318448124530525327542557942, −3.06514759957473651587086831663, −2.92772656027777916870413106862, −1.85773650239462392194805569996, −0.27668080574447311944771080826,
1.79224391649443448737962314976, 2.35281574647281016886865323434, 3.31356794907778796602483455846, 4.63950393980401036221728669385, 5.26770753772702138488774188281, 6.27868310914438135255482337081, 7.11017761750770467155617875529, 7.68309232837552690874360942997, 8.115206455270169776510059415688, 9.084558961400377828169450533688