Properties

Label 2-3800-152.37-c0-0-19
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $1.89644$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.53·3-s + 4-s + 1.53·6-s − 0.347·7-s + 8-s + 1.34·9-s + 1.53·12-s − 1.87·13-s − 0.347·14-s + 16-s + 1.87·17-s + 1.34·18-s − 19-s − 0.532·21-s − 1.53·23-s + 1.53·24-s − 1.87·26-s + 0.532·27-s − 0.347·28-s + 1.87·29-s + 32-s + 1.87·34-s + 1.34·36-s − 37-s − 38-s − 2.87·39-s + ⋯
L(s)  = 1  + 2-s + 1.53·3-s + 4-s + 1.53·6-s − 0.347·7-s + 8-s + 1.34·9-s + 1.53·12-s − 1.87·13-s − 0.347·14-s + 16-s + 1.87·17-s + 1.34·18-s − 19-s − 0.532·21-s − 1.53·23-s + 1.53·24-s − 1.87·26-s + 0.532·27-s − 0.347·28-s + 1.87·29-s + 32-s + 1.87·34-s + 1.34·36-s − 37-s − 38-s − 2.87·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1.89644\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (1101, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.826659113\)
\(L(\frac12)\) \(\approx\) \(3.826659113\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 1.53T + T^{2} \)
7 \( 1 + 0.347T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + 1.87T + T^{2} \)
17 \( 1 - 1.87T + T^{2} \)
23 \( 1 + 1.53T + T^{2} \)
29 \( 1 - 1.87T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T + T^{2} \)
53 \( 1 - 0.347T + T^{2} \)
59 \( 1 + 1.53T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 0.347T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 1.53T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.430386868846505673501221688348, −7.84766650741892632991739127744, −7.33899857033257092072541227421, −6.50620957546656860262610578358, −5.59338816977122144368062773359, −4.68266859244379119676910764480, −3.97349981518851229136937168876, −3.09016778912144398289337552574, −2.60384243654346506981579542080, −1.72408719718483107940422132223, 1.72408719718483107940422132223, 2.60384243654346506981579542080, 3.09016778912144398289337552574, 3.97349981518851229136937168876, 4.68266859244379119676910764480, 5.59338816977122144368062773359, 6.50620957546656860262610578358, 7.33899857033257092072541227421, 7.84766650741892632991739127744, 8.430386868846505673501221688348

Graph of the $Z$-function along the critical line