L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.300 + 0.173i)7-s + (0.866 − 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (0.342 + 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s + i·18-s + (−0.766 + 0.642i)19-s + (−0.524 + 1.43i)22-s + (−1.85 − 0.326i)23-s + (0.5 − 0.866i)26-s + (−0.223 + 0.266i)28-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.300 + 0.173i)7-s + (0.866 − 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (0.342 + 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s + i·18-s + (−0.766 + 0.642i)19-s + (−0.524 + 1.43i)22-s + (−1.85 − 0.326i)23-s + (0.5 − 0.866i)26-s + (−0.223 + 0.266i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.001253223415\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.001253223415\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.642 + 0.766i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
good | 3 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.300 - 0.173i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.342 - 0.939i)T + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (1.85 + 0.326i)T + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.87iT - T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.642 - 0.766i)T + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.342 - 0.0603i)T + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.685167156616307586963195096250, −8.429277584154036605363428928784, −7.950943448061263931343016737391, −6.65103914198193265969425995064, −6.13608538589529939023751196193, −5.14135206455640095688934881665, −4.04322986412497356555076118371, −3.40985581916735307185555614601, −2.50717571169214915264546531428, −1.54056080972528817997209847102,
0.000832598882436861477407193692, 1.80345465476923585013076675921, 2.52012124029436483836010643187, 4.01427366571827111166129073773, 4.91705921928276567139178306754, 5.47365466724506940339506614355, 6.20771480676257074334842279795, 7.16783866967207181808751414540, 7.77179109414204647608243993169, 8.249347917355220939756514074787