Properties

Label 2-3800-152.139-c0-0-0
Degree $2$
Conductor $3800$
Sign $-0.631 - 0.775i$
Analytic cond. $1.89644$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.300 + 0.173i)7-s + (0.866 − 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (0.342 + 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s + i·18-s + (−0.766 + 0.642i)19-s + (−0.524 + 1.43i)22-s + (−1.85 − 0.326i)23-s + (0.5 − 0.866i)26-s + (−0.223 + 0.266i)28-s + ⋯
L(s)  = 1  + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.300 + 0.173i)7-s + (0.866 − 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (0.342 + 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s + i·18-s + (−0.766 + 0.642i)19-s + (−0.524 + 1.43i)22-s + (−1.85 − 0.326i)23-s + (0.5 − 0.866i)26-s + (−0.223 + 0.266i)28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.631 - 0.775i$
Analytic conductor: \(1.89644\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (1051, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :0),\ -0.631 - 0.775i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.001253223415\)
\(L(\frac12)\) \(\approx\) \(0.001253223415\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.642 + 0.766i)T \)
5 \( 1 \)
19 \( 1 + (0.766 - 0.642i)T \)
good3 \( 1 + (0.766 + 0.642i)T^{2} \)
7 \( 1 + (-0.300 - 0.173i)T + (0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (-0.342 - 0.939i)T + (-0.766 + 0.642i)T^{2} \)
17 \( 1 + (0.173 - 0.984i)T^{2} \)
23 \( 1 + (1.85 + 0.326i)T + (0.939 + 0.342i)T^{2} \)
29 \( 1 + (-0.173 - 0.984i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - 1.87iT - T^{2} \)
41 \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \)
43 \( 1 + (-0.939 + 0.342i)T^{2} \)
47 \( 1 + (0.642 - 0.766i)T + (-0.173 - 0.984i)T^{2} \)
53 \( 1 + (-0.342 - 0.0603i)T + (0.939 + 0.342i)T^{2} \)
59 \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \)
61 \( 1 + (0.939 + 0.342i)T^{2} \)
67 \( 1 + (0.173 + 0.984i)T^{2} \)
71 \( 1 + (0.939 - 0.342i)T^{2} \)
73 \( 1 + (0.766 + 0.642i)T^{2} \)
79 \( 1 + (-0.766 - 0.642i)T^{2} \)
83 \( 1 + (-0.5 - 0.866i)T^{2} \)
89 \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \)
97 \( 1 + (0.173 - 0.984i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.685167156616307586963195096250, −8.429277584154036605363428928784, −7.950943448061263931343016737391, −6.65103914198193265969425995064, −6.13608538589529939023751196193, −5.14135206455640095688934881665, −4.04322986412497356555076118371, −3.40985581916735307185555614601, −2.50717571169214915264546531428, −1.54056080972528817997209847102, 0.000832598882436861477407193692, 1.80345465476923585013076675921, 2.52012124029436483836010643187, 4.01427366571827111166129073773, 4.91705921928276567139178306754, 5.47365466724506940339506614355, 6.20771480676257074334842279795, 7.16783866967207181808751414540, 7.77179109414204647608243993169, 8.249347917355220939756514074787

Graph of the $Z$-function along the critical line