| L(s) = 1 | + (−0.173 − 0.984i)2-s + (1.43 − 1.20i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)6-s + (0.5 + 0.866i)8-s + (0.439 − 2.49i)9-s + (0.939 + 1.62i)11-s + (−0.939 + 1.62i)12-s + (0.766 − 0.642i)16-s + (−0.347 − 1.96i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 − 1.20i)22-s + (1.76 + 0.642i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)2-s + (1.43 − 1.20i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)6-s + (0.5 + 0.866i)8-s + (0.439 − 2.49i)9-s + (0.939 + 1.62i)11-s + (−0.939 + 1.62i)12-s + (0.766 − 0.642i)16-s + (−0.347 − 1.96i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 − 1.20i)22-s + (1.76 + 0.642i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.877165091\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.877165091\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.173 + 0.984i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.766 - 0.642i)T \) |
| good | 3 | \( 1 + (-1.43 + 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.347 + 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.0603 - 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.326 - 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.579950330682543404777344001339, −7.56168950939594096459297397799, −7.32745753969337894737136772230, −6.55904118381035277319292949950, −5.13981353753887504683285430012, −4.22030040501837708900486227699, −3.42307317108874536532411814037, −2.60341984362301238046492667324, −1.92906818842351910671578878010, −1.10532613996399056735028032042,
1.54505486513936447597751823243, 3.05726319904983233457956975329, 3.69468098845044206584883926449, 4.26220929610271903543991696799, 5.16766689618862993484952158567, 6.02154484595310557404593543597, 6.76120116129955436759006154298, 7.963849922273385135166915203210, 8.237858198012470938212959081461, 8.885154918412061888196937950001