Properties

Label 2-3800-152.123-c0-0-2
Degree $2$
Conductor $3800$
Sign $-0.0158 - 0.999i$
Analytic cond. $1.89644$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 + 0.173i)2-s + (0.939 − 0.342i)4-s + (1.62 + 0.939i)7-s + (−0.866 + 0.5i)8-s + (−0.173 + 0.984i)9-s + (−0.173 − 0.300i)11-s + (−0.642 + 0.766i)13-s + (−1.76 − 0.642i)14-s + (0.766 − 0.642i)16-s − 0.999i·18-s + (−0.173 − 0.984i)19-s + (0.223 + 0.266i)22-s + (0.524 + 1.43i)23-s + (0.5 − 0.866i)26-s + (1.85 + 0.326i)28-s + ⋯
L(s)  = 1  + (−0.984 + 0.173i)2-s + (0.939 − 0.342i)4-s + (1.62 + 0.939i)7-s + (−0.866 + 0.5i)8-s + (−0.173 + 0.984i)9-s + (−0.173 − 0.300i)11-s + (−0.642 + 0.766i)13-s + (−1.76 − 0.642i)14-s + (0.766 − 0.642i)16-s − 0.999i·18-s + (−0.173 − 0.984i)19-s + (0.223 + 0.266i)22-s + (0.524 + 1.43i)23-s + (0.5 − 0.866i)26-s + (1.85 + 0.326i)28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.0158 - 0.999i$
Analytic conductor: \(1.89644\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (2251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :0),\ -0.0158 - 0.999i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8933282714\)
\(L(\frac12)\) \(\approx\) \(0.8933282714\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.984 - 0.173i)T \)
5 \( 1 \)
19 \( 1 + (0.173 + 0.984i)T \)
good3 \( 1 + (0.173 - 0.984i)T^{2} \)
7 \( 1 + (-1.62 - 0.939i)T + (0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.642 - 0.766i)T + (-0.173 - 0.984i)T^{2} \)
17 \( 1 + (-0.939 + 0.342i)T^{2} \)
23 \( 1 + (-0.524 - 1.43i)T + (-0.766 + 0.642i)T^{2} \)
29 \( 1 + (0.939 + 0.342i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - 1.53iT - T^{2} \)
41 \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \)
43 \( 1 + (0.766 + 0.642i)T^{2} \)
47 \( 1 + (0.984 + 0.173i)T + (0.939 + 0.342i)T^{2} \)
53 \( 1 + (0.642 + 1.76i)T + (-0.766 + 0.642i)T^{2} \)
59 \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \)
61 \( 1 + (-0.766 + 0.642i)T^{2} \)
67 \( 1 + (-0.939 - 0.342i)T^{2} \)
71 \( 1 + (-0.766 - 0.642i)T^{2} \)
73 \( 1 + (0.173 - 0.984i)T^{2} \)
79 \( 1 + (-0.173 + 0.984i)T^{2} \)
83 \( 1 + (-0.5 - 0.866i)T^{2} \)
89 \( 1 + (1.17 + 0.984i)T + (0.173 + 0.984i)T^{2} \)
97 \( 1 + (-0.939 + 0.342i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.678663448361280706779055448461, −8.257401171450184778415097758016, −7.57374542284768045247082526841, −6.94864075978801604928296500191, −5.86647156722374131847995702601, −5.11498510415167895927423816591, −4.71894595037190342882151347244, −3.00162280941763333422372465494, −2.14909085073748212892311383992, −1.52863128661068222437468926906, 0.71757907700913506663827882447, 1.70870756343875180248521877538, 2.72987191075976230328357279156, 3.80681252109303729416813572369, 4.61091005793972721232595373415, 5.59040418580738824131837130038, 6.52261332564005836742053933288, 7.30348844219780215429303656719, 7.87201553074766484168904335566, 8.368486478316412973847635814496

Graph of the $Z$-function along the critical line