L(s) = 1 | + (−0.5 + 0.866i)2-s + (−1 + 1.73i)3-s + (−0.499 − 0.866i)4-s + (−0.999 − 1.73i)6-s + 0.999·8-s + (−1.49 − 2.59i)9-s − 11-s + 1.99·12-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + 3·18-s + 19-s + (0.5 − 0.866i)22-s + (−1 + 1.73i)24-s + 4·27-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−1 + 1.73i)3-s + (−0.499 − 0.866i)4-s + (−0.999 − 1.73i)6-s + 0.999·8-s + (−1.49 − 2.59i)9-s − 11-s + 1.99·12-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + 3·18-s + 19-s + (0.5 − 0.866i)22-s + (−1 + 1.73i)24-s + 4·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5470633676\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5470633676\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 2T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.122071345926588598575568097106, −8.332069598149599117981018553842, −7.45468440700127506174417905295, −6.60107986511674122415307284124, −5.72537649953636185351604359329, −5.27696142126478775552119289126, −4.77086111356691073240131427652, −3.86393011855442051595249922593, −2.87508101750869351776484650408, −0.76022739601535963651202880162,
0.68423752526969071470027603493, 1.68287882945680099695377238636, 2.43647482493826202488866773414, 3.39005638050539678256863861898, 4.83243154849529916787784962448, 5.45949140196912992993251475685, 6.24465723971237284711489609820, 7.21711840564239426605320191311, 7.66431842077474198234987457278, 8.204904509616653978322091610269