L(s) = 1 | + 1.83·3-s − 1.83·7-s + 0.364·9-s + 0.834·11-s − 2.19·13-s + 2.56·17-s − 19-s − 3.36·21-s + 0.635·23-s − 4.83·27-s − 9.62·29-s − 6.59·31-s + 1.53·33-s − 5.23·37-s − 4.03·39-s + 4.43·41-s + 7.06·43-s − 9.86·47-s − 3.63·49-s + 4.70·51-s − 0.668·53-s − 1.83·57-s + 0.397·59-s + 2.26·61-s − 0.668·63-s − 2.43·67-s + 1.16·69-s + ⋯ |
L(s) = 1 | + 1.05·3-s − 0.693·7-s + 0.121·9-s + 0.251·11-s − 0.609·13-s + 0.621·17-s − 0.229·19-s − 0.734·21-s + 0.132·23-s − 0.930·27-s − 1.78·29-s − 1.18·31-s + 0.266·33-s − 0.860·37-s − 0.645·39-s + 0.691·41-s + 1.07·43-s − 1.43·47-s − 0.519·49-s + 0.658·51-s − 0.0918·53-s − 0.242·57-s + 0.0517·59-s + 0.289·61-s − 0.0842·63-s − 0.297·67-s + 0.140·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 1.83T + 3T^{2} \) |
| 7 | \( 1 + 1.83T + 7T^{2} \) |
| 11 | \( 1 - 0.834T + 11T^{2} \) |
| 13 | \( 1 + 2.19T + 13T^{2} \) |
| 17 | \( 1 - 2.56T + 17T^{2} \) |
| 23 | \( 1 - 0.635T + 23T^{2} \) |
| 29 | \( 1 + 9.62T + 29T^{2} \) |
| 31 | \( 1 + 6.59T + 31T^{2} \) |
| 37 | \( 1 + 5.23T + 37T^{2} \) |
| 41 | \( 1 - 4.43T + 41T^{2} \) |
| 43 | \( 1 - 7.06T + 43T^{2} \) |
| 47 | \( 1 + 9.86T + 47T^{2} \) |
| 53 | \( 1 + 0.668T + 53T^{2} \) |
| 59 | \( 1 - 0.397T + 59T^{2} \) |
| 61 | \( 1 - 2.26T + 61T^{2} \) |
| 67 | \( 1 + 2.43T + 67T^{2} \) |
| 71 | \( 1 - 4.12T + 71T^{2} \) |
| 73 | \( 1 - 9.49T + 73T^{2} \) |
| 79 | \( 1 - 2.62T + 79T^{2} \) |
| 83 | \( 1 + 10.8T + 83T^{2} \) |
| 89 | \( 1 + 5.97T + 89T^{2} \) |
| 97 | \( 1 - 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.093682965558977844396211324116, −7.52507373125677264850859810014, −6.83111353537210694594080084318, −5.87108085467554612941004445907, −5.17838851795424648719812872485, −3.94509612107281138825903254815, −3.43142644906327888796760043350, −2.59118393412328920923934829972, −1.69938138923647869474060876619, 0,
1.69938138923647869474060876619, 2.59118393412328920923934829972, 3.43142644906327888796760043350, 3.94509612107281138825903254815, 5.17838851795424648719812872485, 5.87108085467554612941004445907, 6.83111353537210694594080084318, 7.52507373125677264850859810014, 8.093682965558977844396211324116