Properties

Label 2-3800-1.1-c1-0-70
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.656·3-s − 0.656·7-s − 2.56·9-s − 0.343·11-s + 1.91·13-s − 4.48·17-s − 19-s − 0.431·21-s + 3.56·23-s − 3.65·27-s + 7.99·29-s + 5.73·31-s − 0.225·33-s + 4.16·37-s + 1.25·39-s − 9.08·41-s − 3.51·43-s − 3.40·47-s − 6.56·49-s − 2.94·51-s + 1.68·53-s − 0.656·57-s − 7.82·59-s − 12.4·61-s + 1.68·63-s − 9.48·67-s + 2.34·69-s + ⋯
L(s)  = 1  + 0.379·3-s − 0.248·7-s − 0.856·9-s − 0.103·11-s + 0.530·13-s − 1.08·17-s − 0.229·19-s − 0.0940·21-s + 0.744·23-s − 0.703·27-s + 1.48·29-s + 1.03·31-s − 0.0392·33-s + 0.685·37-s + 0.201·39-s − 1.41·41-s − 0.535·43-s − 0.496·47-s − 0.938·49-s − 0.412·51-s + 0.231·53-s − 0.0869·57-s − 1.01·59-s − 1.59·61-s + 0.212·63-s − 1.15·67-s + 0.282·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 0.656T + 3T^{2} \)
7 \( 1 + 0.656T + 7T^{2} \)
11 \( 1 + 0.343T + 11T^{2} \)
13 \( 1 - 1.91T + 13T^{2} \)
17 \( 1 + 4.48T + 17T^{2} \)
23 \( 1 - 3.56T + 23T^{2} \)
29 \( 1 - 7.99T + 29T^{2} \)
31 \( 1 - 5.73T + 31T^{2} \)
37 \( 1 - 4.16T + 37T^{2} \)
41 \( 1 + 9.08T + 41T^{2} \)
43 \( 1 + 3.51T + 43T^{2} \)
47 \( 1 + 3.40T + 47T^{2} \)
53 \( 1 - 1.68T + 53T^{2} \)
59 \( 1 + 7.82T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 + 9.48T + 67T^{2} \)
71 \( 1 + 9.96T + 71T^{2} \)
73 \( 1 + 7.53T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 - 10.9T + 83T^{2} \)
89 \( 1 + 4.19T + 89T^{2} \)
97 \( 1 + 1.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.400857523451802133838719864205, −7.46114608083600992312359043270, −6.47233953911164380653912848134, −6.14936551112879749118937056254, −4.98966105248641675500241037610, −4.36166358421594560214527388757, −3.17437224144646102243388497717, −2.73872341793384095483731526297, −1.49337598316701049649307513347, 0, 1.49337598316701049649307513347, 2.73872341793384095483731526297, 3.17437224144646102243388497717, 4.36166358421594560214527388757, 4.98966105248641675500241037610, 6.14936551112879749118937056254, 6.47233953911164380653912848134, 7.46114608083600992312359043270, 8.400857523451802133838719864205

Graph of the $Z$-function along the critical line