Properties

Label 2-3800-1.1-c1-0-54
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·3-s + 3.77·7-s + 4.31·9-s + 4.71·11-s − 5.44·13-s − 2.40·17-s + 19-s + 10.2·21-s + 4.38·23-s + 3.55·27-s + 9.05·29-s − 9.92·31-s + 12.7·33-s + 10.0·37-s − 14.7·39-s + 1.11·41-s − 12.1·43-s + 6.72·47-s + 7.28·49-s − 6.51·51-s + 4.34·53-s + 2.70·57-s − 4.03·59-s − 9.14·61-s + 16.3·63-s + 4.39·67-s + 11.8·69-s + ⋯
L(s)  = 1  + 1.56·3-s + 1.42·7-s + 1.43·9-s + 1.42·11-s − 1.50·13-s − 0.584·17-s + 0.229·19-s + 2.23·21-s + 0.915·23-s + 0.684·27-s + 1.68·29-s − 1.78·31-s + 2.22·33-s + 1.65·37-s − 2.35·39-s + 0.174·41-s − 1.84·43-s + 0.980·47-s + 1.04·49-s − 0.912·51-s + 0.597·53-s + 0.358·57-s − 0.525·59-s − 1.17·61-s + 2.05·63-s + 0.537·67-s + 1.42·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.265256387\)
\(L(\frac12)\) \(\approx\) \(4.265256387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.70T + 3T^{2} \)
7 \( 1 - 3.77T + 7T^{2} \)
11 \( 1 - 4.71T + 11T^{2} \)
13 \( 1 + 5.44T + 13T^{2} \)
17 \( 1 + 2.40T + 17T^{2} \)
23 \( 1 - 4.38T + 23T^{2} \)
29 \( 1 - 9.05T + 29T^{2} \)
31 \( 1 + 9.92T + 31T^{2} \)
37 \( 1 - 10.0T + 37T^{2} \)
41 \( 1 - 1.11T + 41T^{2} \)
43 \( 1 + 12.1T + 43T^{2} \)
47 \( 1 - 6.72T + 47T^{2} \)
53 \( 1 - 4.34T + 53T^{2} \)
59 \( 1 + 4.03T + 59T^{2} \)
61 \( 1 + 9.14T + 61T^{2} \)
67 \( 1 - 4.39T + 67T^{2} \)
71 \( 1 - 7.90T + 71T^{2} \)
73 \( 1 - 3.07T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 + 4.37T + 83T^{2} \)
89 \( 1 - 2.53T + 89T^{2} \)
97 \( 1 + 0.302T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.460520615299712274801513924869, −7.900928175317174353723216912910, −7.24149927553213894423313854070, −6.59952482346512916830842356875, −5.21180014944874551341832886002, −4.55827124859823565158939970972, −3.87591256873129994719364903588, −2.83285418013584139551665376052, −2.10314621713100250303358454587, −1.25483300358077305626455926866, 1.25483300358077305626455926866, 2.10314621713100250303358454587, 2.83285418013584139551665376052, 3.87591256873129994719364903588, 4.55827124859823565158939970972, 5.21180014944874551341832886002, 6.59952482346512916830842356875, 7.24149927553213894423313854070, 7.900928175317174353723216912910, 8.460520615299712274801513924869

Graph of the $Z$-function along the critical line