Properties

Label 2-3800-1.1-c1-0-52
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·3-s + 2.49·7-s + 3.20·9-s − 3.49·11-s − 0.713·13-s + 3.91·17-s − 19-s − 6.20·21-s − 2.20·23-s − 0.509·27-s + 0.636·29-s − 2.14·31-s + 8.69·33-s + 2.06·37-s + 1.77·39-s − 4.35·41-s − 4.55·43-s + 0.268·47-s − 0.795·49-s − 9.75·51-s + 7.98·53-s + 2.49·57-s − 2.57·59-s − 10.8·61-s + 7.98·63-s − 1.08·67-s + 5.49·69-s + ⋯
L(s)  = 1  − 1.43·3-s + 0.941·7-s + 1.06·9-s − 1.05·11-s − 0.197·13-s + 0.950·17-s − 0.229·19-s − 1.35·21-s − 0.459·23-s − 0.0979·27-s + 0.118·29-s − 0.384·31-s + 1.51·33-s + 0.339·37-s + 0.284·39-s − 0.679·41-s − 0.694·43-s + 0.0391·47-s − 0.113·49-s − 1.36·51-s + 1.09·53-s + 0.329·57-s − 0.334·59-s − 1.38·61-s + 1.00·63-s − 0.132·67-s + 0.661·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2.49T + 3T^{2} \)
7 \( 1 - 2.49T + 7T^{2} \)
11 \( 1 + 3.49T + 11T^{2} \)
13 \( 1 + 0.713T + 13T^{2} \)
17 \( 1 - 3.91T + 17T^{2} \)
23 \( 1 + 2.20T + 23T^{2} \)
29 \( 1 - 0.636T + 29T^{2} \)
31 \( 1 + 2.14T + 31T^{2} \)
37 \( 1 - 2.06T + 37T^{2} \)
41 \( 1 + 4.35T + 41T^{2} \)
43 \( 1 + 4.55T + 43T^{2} \)
47 \( 1 - 0.268T + 47T^{2} \)
53 \( 1 - 7.98T + 53T^{2} \)
59 \( 1 + 2.57T + 59T^{2} \)
61 \( 1 + 10.8T + 61T^{2} \)
67 \( 1 + 1.08T + 67T^{2} \)
71 \( 1 - 6.83T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 + 7.63T + 79T^{2} \)
83 \( 1 - 0.923T + 83T^{2} \)
89 \( 1 - 14.1T + 89T^{2} \)
97 \( 1 - 6.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.943036602010767857566676303212, −7.45271506710809212364603004843, −6.48308885865661534165632782739, −5.77927208211614934619193280526, −5.09779379196637661083727624603, −4.73895646290322772409257666376, −3.56768623641169398570678218423, −2.32137982425171124118785129305, −1.21396617733099083541986433017, 0, 1.21396617733099083541986433017, 2.32137982425171124118785129305, 3.56768623641169398570678218423, 4.73895646290322772409257666376, 5.09779379196637661083727624603, 5.77927208211614934619193280526, 6.48308885865661534165632782739, 7.45271506710809212364603004843, 7.943036602010767857566676303212

Graph of the $Z$-function along the critical line