L(s) = 1 | − 1.87·3-s + 1.18·7-s + 0.532·9-s − 2.18·11-s − 1.71·13-s − 0.120·17-s + 19-s − 2.22·21-s + 7.98·23-s + 4.63·27-s + 3.24·29-s − 8.41·31-s + 4.10·33-s + 3.33·37-s + 3.22·39-s − 8.98·41-s + 4.06·43-s − 1.71·47-s − 5.59·49-s + 0.226·51-s − 6.51·53-s − 1.87·57-s + 10.2·59-s + 6.53·61-s + 0.630·63-s − 2.18·67-s − 15.0·69-s + ⋯ |
L(s) = 1 | − 1.08·3-s + 0.447·7-s + 0.177·9-s − 0.658·11-s − 0.476·13-s − 0.0292·17-s + 0.229·19-s − 0.485·21-s + 1.66·23-s + 0.892·27-s + 0.603·29-s − 1.51·31-s + 0.714·33-s + 0.547·37-s + 0.516·39-s − 1.40·41-s + 0.619·43-s − 0.250·47-s − 0.799·49-s + 0.0317·51-s − 0.895·53-s − 0.248·57-s + 1.32·59-s + 0.837·61-s + 0.0794·63-s − 0.266·67-s − 1.80·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + 1.87T + 3T^{2} \) |
| 7 | \( 1 - 1.18T + 7T^{2} \) |
| 11 | \( 1 + 2.18T + 11T^{2} \) |
| 13 | \( 1 + 1.71T + 13T^{2} \) |
| 17 | \( 1 + 0.120T + 17T^{2} \) |
| 23 | \( 1 - 7.98T + 23T^{2} \) |
| 29 | \( 1 - 3.24T + 29T^{2} \) |
| 31 | \( 1 + 8.41T + 31T^{2} \) |
| 37 | \( 1 - 3.33T + 37T^{2} \) |
| 41 | \( 1 + 8.98T + 41T^{2} \) |
| 43 | \( 1 - 4.06T + 43T^{2} \) |
| 47 | \( 1 + 1.71T + 47T^{2} \) |
| 53 | \( 1 + 6.51T + 53T^{2} \) |
| 59 | \( 1 - 10.2T + 59T^{2} \) |
| 61 | \( 1 - 6.53T + 61T^{2} \) |
| 67 | \( 1 + 2.18T + 67T^{2} \) |
| 71 | \( 1 + 9.12T + 71T^{2} \) |
| 73 | \( 1 - 0.773T + 73T^{2} \) |
| 79 | \( 1 - 1.63T + 79T^{2} \) |
| 83 | \( 1 - 2.44T + 83T^{2} \) |
| 89 | \( 1 - 2.83T + 89T^{2} \) |
| 97 | \( 1 + 2.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.089376659493718085621829562350, −7.24777202094073446204374677016, −6.67446778875160054132559089883, −5.73404515996357486166852052872, −5.11518292965691443897873125193, −4.70132888224051495653190760036, −3.41840783933411250601966509292, −2.47998568446861182024042590298, −1.21292751933200864647673746255, 0,
1.21292751933200864647673746255, 2.47998568446861182024042590298, 3.41840783933411250601966509292, 4.70132888224051495653190760036, 5.11518292965691443897873125193, 5.73404515996357486166852052872, 6.67446778875160054132559089883, 7.24777202094073446204374677016, 8.089376659493718085621829562350