Properties

Label 2-3800-1.1-c1-0-51
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·3-s + 1.18·7-s + 0.532·9-s − 2.18·11-s − 1.71·13-s − 0.120·17-s + 19-s − 2.22·21-s + 7.98·23-s + 4.63·27-s + 3.24·29-s − 8.41·31-s + 4.10·33-s + 3.33·37-s + 3.22·39-s − 8.98·41-s + 4.06·43-s − 1.71·47-s − 5.59·49-s + 0.226·51-s − 6.51·53-s − 1.87·57-s + 10.2·59-s + 6.53·61-s + 0.630·63-s − 2.18·67-s − 15.0·69-s + ⋯
L(s)  = 1  − 1.08·3-s + 0.447·7-s + 0.177·9-s − 0.658·11-s − 0.476·13-s − 0.0292·17-s + 0.229·19-s − 0.485·21-s + 1.66·23-s + 0.892·27-s + 0.603·29-s − 1.51·31-s + 0.714·33-s + 0.547·37-s + 0.516·39-s − 1.40·41-s + 0.619·43-s − 0.250·47-s − 0.799·49-s + 0.0317·51-s − 0.895·53-s − 0.248·57-s + 1.32·59-s + 0.837·61-s + 0.0794·63-s − 0.266·67-s − 1.80·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 1.87T + 3T^{2} \)
7 \( 1 - 1.18T + 7T^{2} \)
11 \( 1 + 2.18T + 11T^{2} \)
13 \( 1 + 1.71T + 13T^{2} \)
17 \( 1 + 0.120T + 17T^{2} \)
23 \( 1 - 7.98T + 23T^{2} \)
29 \( 1 - 3.24T + 29T^{2} \)
31 \( 1 + 8.41T + 31T^{2} \)
37 \( 1 - 3.33T + 37T^{2} \)
41 \( 1 + 8.98T + 41T^{2} \)
43 \( 1 - 4.06T + 43T^{2} \)
47 \( 1 + 1.71T + 47T^{2} \)
53 \( 1 + 6.51T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 - 6.53T + 61T^{2} \)
67 \( 1 + 2.18T + 67T^{2} \)
71 \( 1 + 9.12T + 71T^{2} \)
73 \( 1 - 0.773T + 73T^{2} \)
79 \( 1 - 1.63T + 79T^{2} \)
83 \( 1 - 2.44T + 83T^{2} \)
89 \( 1 - 2.83T + 89T^{2} \)
97 \( 1 + 2.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.089376659493718085621829562350, −7.24777202094073446204374677016, −6.67446778875160054132559089883, −5.73404515996357486166852052872, −5.11518292965691443897873125193, −4.70132888224051495653190760036, −3.41840783933411250601966509292, −2.47998568446861182024042590298, −1.21292751933200864647673746255, 0, 1.21292751933200864647673746255, 2.47998568446861182024042590298, 3.41840783933411250601966509292, 4.70132888224051495653190760036, 5.11518292965691443897873125193, 5.73404515996357486166852052872, 6.67446778875160054132559089883, 7.24777202094073446204374677016, 8.089376659493718085621829562350

Graph of the $Z$-function along the critical line