L(s) = 1 | + 2.79·3-s + 0.127·7-s + 4.83·9-s + 5.21·11-s − 0.515·13-s + 3.58·17-s + 19-s + 0.357·21-s − 6.50·23-s + 5.14·27-s − 3.05·29-s + 5.44·31-s + 14.5·33-s − 4.99·37-s − 1.44·39-s + 11.4·41-s − 2.06·43-s + 11.9·47-s − 6.98·49-s + 10.0·51-s + 2.25·53-s + 2.79·57-s + 1.89·59-s − 5.83·61-s + 0.616·63-s + 0.432·67-s − 18.2·69-s + ⋯ |
L(s) = 1 | + 1.61·3-s + 0.0482·7-s + 1.61·9-s + 1.57·11-s − 0.142·13-s + 0.868·17-s + 0.229·19-s + 0.0779·21-s − 1.35·23-s + 0.989·27-s − 0.567·29-s + 0.977·31-s + 2.54·33-s − 0.821·37-s − 0.231·39-s + 1.78·41-s − 0.315·43-s + 1.73·47-s − 0.997·49-s + 1.40·51-s + 0.310·53-s + 0.370·57-s + 0.246·59-s − 0.746·61-s + 0.0777·63-s + 0.0528·67-s − 2.19·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.018688400\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.018688400\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 2.79T + 3T^{2} \) |
| 7 | \( 1 - 0.127T + 7T^{2} \) |
| 11 | \( 1 - 5.21T + 11T^{2} \) |
| 13 | \( 1 + 0.515T + 13T^{2} \) |
| 17 | \( 1 - 3.58T + 17T^{2} \) |
| 23 | \( 1 + 6.50T + 23T^{2} \) |
| 29 | \( 1 + 3.05T + 29T^{2} \) |
| 31 | \( 1 - 5.44T + 31T^{2} \) |
| 37 | \( 1 + 4.99T + 37T^{2} \) |
| 41 | \( 1 - 11.4T + 41T^{2} \) |
| 43 | \( 1 + 2.06T + 43T^{2} \) |
| 47 | \( 1 - 11.9T + 47T^{2} \) |
| 53 | \( 1 - 2.25T + 53T^{2} \) |
| 59 | \( 1 - 1.89T + 59T^{2} \) |
| 61 | \( 1 + 5.83T + 61T^{2} \) |
| 67 | \( 1 - 0.432T + 67T^{2} \) |
| 71 | \( 1 - 4.77T + 71T^{2} \) |
| 73 | \( 1 - 9.98T + 73T^{2} \) |
| 79 | \( 1 + 3.28T + 79T^{2} \) |
| 83 | \( 1 - 0.496T + 83T^{2} \) |
| 89 | \( 1 + 12.4T + 89T^{2} \) |
| 97 | \( 1 - 7.00T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.459214695435838761082182702064, −7.910882866411478453913042090478, −7.24779986109603123094899813479, −6.43343729713354165866988267725, −5.55574842788160455432347972300, −4.24279194898142944047893608085, −3.85816143555688724288215696468, −3.00755292430544107951787788499, −2.09090628458287860144196322609, −1.19296284502594746923767920620,
1.19296284502594746923767920620, 2.09090628458287860144196322609, 3.00755292430544107951787788499, 3.85816143555688724288215696468, 4.24279194898142944047893608085, 5.55574842788160455432347972300, 6.43343729713354165866988267725, 7.24779986109603123094899813479, 7.910882866411478453913042090478, 8.459214695435838761082182702064