Properties

Label 2-3800-1.1-c1-0-42
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.30·3-s − 1.63·7-s + 7.89·9-s − 4.67·11-s + 4.75·13-s + 1.41·17-s + 19-s − 5.38·21-s + 1.96·23-s + 16.1·27-s + 6.85·29-s + 5.08·31-s − 15.4·33-s − 10.6·37-s + 15.6·39-s − 4.52·41-s + 7.83·43-s + 10.9·47-s − 4.34·49-s + 4.66·51-s + 1.55·53-s + 3.30·57-s − 6.81·59-s − 0.109·61-s − 12.8·63-s + 10.5·67-s + 6.48·69-s + ⋯
L(s)  = 1  + 1.90·3-s − 0.616·7-s + 2.63·9-s − 1.40·11-s + 1.31·13-s + 0.343·17-s + 0.229·19-s − 1.17·21-s + 0.409·23-s + 3.11·27-s + 1.27·29-s + 0.912·31-s − 2.68·33-s − 1.74·37-s + 2.51·39-s − 0.706·41-s + 1.19·43-s + 1.59·47-s − 0.620·49-s + 0.653·51-s + 0.214·53-s + 0.437·57-s − 0.887·59-s − 0.0139·61-s − 1.62·63-s + 1.29·67-s + 0.780·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.907746836\)
\(L(\frac12)\) \(\approx\) \(3.907746836\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 3.30T + 3T^{2} \)
7 \( 1 + 1.63T + 7T^{2} \)
11 \( 1 + 4.67T + 11T^{2} \)
13 \( 1 - 4.75T + 13T^{2} \)
17 \( 1 - 1.41T + 17T^{2} \)
23 \( 1 - 1.96T + 23T^{2} \)
29 \( 1 - 6.85T + 29T^{2} \)
31 \( 1 - 5.08T + 31T^{2} \)
37 \( 1 + 10.6T + 37T^{2} \)
41 \( 1 + 4.52T + 41T^{2} \)
43 \( 1 - 7.83T + 43T^{2} \)
47 \( 1 - 10.9T + 47T^{2} \)
53 \( 1 - 1.55T + 53T^{2} \)
59 \( 1 + 6.81T + 59T^{2} \)
61 \( 1 + 0.109T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 - 12.7T + 71T^{2} \)
73 \( 1 + 0.519T + 73T^{2} \)
79 \( 1 - 0.840T + 79T^{2} \)
83 \( 1 + 11.9T + 83T^{2} \)
89 \( 1 + 7.44T + 89T^{2} \)
97 \( 1 + 8.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.459147048792876735933323851715, −8.014876437056643078219750867833, −7.21652858518271891427818910671, −6.53828159139984104330271052815, −5.43965244284526389067980493797, −4.45040997678695802033102514524, −3.54029383780537204278981138292, −3.01961105908707122721732336403, −2.30558340894034523111948461928, −1.11192756158897836347224744797, 1.11192756158897836347224744797, 2.30558340894034523111948461928, 3.01961105908707122721732336403, 3.54029383780537204278981138292, 4.45040997678695802033102514524, 5.43965244284526389067980493797, 6.53828159139984104330271052815, 7.21652858518271891427818910671, 8.014876437056643078219750867833, 8.459147048792876735933323851715

Graph of the $Z$-function along the critical line