Properties

Label 2-3800-1.1-c1-0-41
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·3-s + 3.60·7-s + 2.90·9-s − 2.37·11-s − 3.96·13-s + 4.28·17-s + 19-s + 8.76·21-s − 1.07·23-s − 0.227·27-s + 9.47·29-s + 6.38·31-s − 5.78·33-s + 2.04·37-s − 9.63·39-s − 4.38·41-s + 7.86·43-s + 3.83·47-s + 6.01·49-s + 10.4·51-s − 11.7·53-s + 2.43·57-s + 4.59·59-s + 6.62·61-s + 10.4·63-s + 7.02·67-s − 2.60·69-s + ⋯
L(s)  = 1  + 1.40·3-s + 1.36·7-s + 0.968·9-s − 0.717·11-s − 1.10·13-s + 1.03·17-s + 0.229·19-s + 1.91·21-s − 0.223·23-s − 0.0437·27-s + 1.75·29-s + 1.14·31-s − 1.00·33-s + 0.336·37-s − 1.54·39-s − 0.684·41-s + 1.19·43-s + 0.559·47-s + 0.859·49-s + 1.45·51-s − 1.61·53-s + 0.321·57-s + 0.598·59-s + 0.848·61-s + 1.32·63-s + 0.858·67-s − 0.314·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.690815542\)
\(L(\frac12)\) \(\approx\) \(3.690815542\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.43T + 3T^{2} \)
7 \( 1 - 3.60T + 7T^{2} \)
11 \( 1 + 2.37T + 11T^{2} \)
13 \( 1 + 3.96T + 13T^{2} \)
17 \( 1 - 4.28T + 17T^{2} \)
23 \( 1 + 1.07T + 23T^{2} \)
29 \( 1 - 9.47T + 29T^{2} \)
31 \( 1 - 6.38T + 31T^{2} \)
37 \( 1 - 2.04T + 37T^{2} \)
41 \( 1 + 4.38T + 41T^{2} \)
43 \( 1 - 7.86T + 43T^{2} \)
47 \( 1 - 3.83T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 - 4.59T + 59T^{2} \)
61 \( 1 - 6.62T + 61T^{2} \)
67 \( 1 - 7.02T + 67T^{2} \)
71 \( 1 - 4.99T + 71T^{2} \)
73 \( 1 + 2.93T + 73T^{2} \)
79 \( 1 - 0.860T + 79T^{2} \)
83 \( 1 - 11.9T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 - 18.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.316572078009453769391925113215, −7.82950306131341214747112920926, −7.53999669555286333496499168664, −6.38634163047286501165859753042, −5.16982521813512445110662776189, −4.78287478025222315653825921355, −3.76274819037525214049690582969, −2.74317353628477875567174612397, −2.28931107043873751754527541729, −1.10965333754949256394053909324, 1.10965333754949256394053909324, 2.28931107043873751754527541729, 2.74317353628477875567174612397, 3.76274819037525214049690582969, 4.78287478025222315653825921355, 5.16982521813512445110662776189, 6.38634163047286501165859753042, 7.53999669555286333496499168664, 7.82950306131341214747112920926, 8.316572078009453769391925113215

Graph of the $Z$-function along the critical line