Properties

Label 2-3800-1.1-c1-0-33
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.97·3-s − 4.30·7-s + 5.87·9-s + 1.96·11-s − 5.83·13-s + 6.46·17-s + 19-s + 12.8·21-s − 4.45·23-s − 8.55·27-s − 5.31·29-s − 0.713·31-s − 5.84·33-s + 8.56·37-s + 17.3·39-s + 2.71·41-s + 7.62·43-s + 4.25·47-s + 11.5·49-s − 19.2·51-s + 7.90·53-s − 2.97·57-s − 6.04·59-s + 1.00·61-s − 25.2·63-s − 12.1·67-s + 13.2·69-s + ⋯
L(s)  = 1  − 1.71·3-s − 1.62·7-s + 1.95·9-s + 0.591·11-s − 1.61·13-s + 1.56·17-s + 0.229·19-s + 2.79·21-s − 0.929·23-s − 1.64·27-s − 0.986·29-s − 0.128·31-s − 1.01·33-s + 1.40·37-s + 2.78·39-s + 0.423·41-s + 1.16·43-s + 0.619·47-s + 1.65·49-s − 2.69·51-s + 1.08·53-s − 0.394·57-s − 0.787·59-s + 0.129·61-s − 3.18·63-s − 1.47·67-s + 1.59·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 2.97T + 3T^{2} \)
7 \( 1 + 4.30T + 7T^{2} \)
11 \( 1 - 1.96T + 11T^{2} \)
13 \( 1 + 5.83T + 13T^{2} \)
17 \( 1 - 6.46T + 17T^{2} \)
23 \( 1 + 4.45T + 23T^{2} \)
29 \( 1 + 5.31T + 29T^{2} \)
31 \( 1 + 0.713T + 31T^{2} \)
37 \( 1 - 8.56T + 37T^{2} \)
41 \( 1 - 2.71T + 41T^{2} \)
43 \( 1 - 7.62T + 43T^{2} \)
47 \( 1 - 4.25T + 47T^{2} \)
53 \( 1 - 7.90T + 53T^{2} \)
59 \( 1 + 6.04T + 59T^{2} \)
61 \( 1 - 1.00T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 - 0.272T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 - 1.95T + 79T^{2} \)
83 \( 1 - 5.52T + 83T^{2} \)
89 \( 1 + 0.632T + 89T^{2} \)
97 \( 1 - 7.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70969458929928381820625396330, −7.27142725509410587480431443931, −6.47533034280041328471258248998, −5.86188996390344157514182589718, −5.42313398869588983997435401987, −4.38815158110018228542326278594, −3.62335770986501353970037250780, −2.49201948616089429876807818676, −0.966082243953473213882923843641, 0, 0.966082243953473213882923843641, 2.49201948616089429876807818676, 3.62335770986501353970037250780, 4.38815158110018228542326278594, 5.42313398869588983997435401987, 5.86188996390344157514182589718, 6.47533034280041328471258248998, 7.27142725509410587480431443931, 7.70969458929928381820625396330

Graph of the $Z$-function along the critical line