L(s) = 1 | + (2.48 − 1.43i)3-s + (−2.21 + 0.325i)5-s − 3.54i·7-s + (2.62 − 4.54i)9-s − 1.81·11-s + (−2.78 − 1.60i)13-s + (−5.03 + 3.98i)15-s + (6.92 − 3.99i)17-s + (0.863 + 4.27i)19-s + (−5.09 − 8.82i)21-s + (7.30 + 4.21i)23-s + (4.78 − 1.43i)25-s − 6.46i·27-s + (−4.29 + 7.43i)29-s − 1.70·31-s + ⋯ |
L(s) = 1 | + (1.43 − 0.829i)3-s + (−0.989 + 0.145i)5-s − 1.34i·7-s + (0.875 − 1.51i)9-s − 0.547·11-s + (−0.771 − 0.445i)13-s + (−1.30 + 1.02i)15-s + (1.67 − 0.969i)17-s + (0.198 + 0.980i)19-s + (−1.11 − 1.92i)21-s + (1.52 + 0.878i)23-s + (0.957 − 0.287i)25-s − 1.24i·27-s + (−0.796 + 1.38i)29-s − 0.306·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33366 - 1.16762i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33366 - 1.16762i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.21 - 0.325i)T \) |
| 19 | \( 1 + (-0.863 - 4.27i)T \) |
good | 3 | \( 1 + (-2.48 + 1.43i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 3.54iT - 7T^{2} \) |
| 11 | \( 1 + 1.81T + 11T^{2} \) |
| 13 | \( 1 + (2.78 + 1.60i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.92 + 3.99i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-7.30 - 4.21i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.29 - 7.43i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.70T + 31T^{2} \) |
| 37 | \( 1 + 5.50iT - 37T^{2} \) |
| 41 | \( 1 + (-4.05 - 7.02i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.35 - 2.51i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.16 + 0.674i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.92 - 1.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.960 - 1.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.83 + 4.90i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.04 + 4.64i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.94 + 5.09i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.82 + 1.63i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.08 - 3.61i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.30iT - 83T^{2} \) |
| 89 | \( 1 + (-2.73 + 4.73i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.91 - 3.99i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14864424513546729925540009583, −10.11850165297537039121028488307, −9.202446447927930862170396891946, −7.911422582522224856445076395859, −7.53573254337078677630640131703, −7.11083995531319886180173908266, −5.11041537809232966638626011539, −3.57370815969145425063327372758, −3.06511924896433368291802518274, −1.13175118162727061657257292508,
2.45950699808882402987926574162, 3.28739219444754183040540273317, 4.46566354394546475349161094072, 5.44013256463677356941397793729, 7.25209957053765855921485601722, 8.141169094792082775792926572911, 8.772614873606424728057929824263, 9.496785766824658770909686095283, 10.45241892095192876693687185840, 11.61506469206102314030121577681