L(s) = 1 | + (−2.10 + 1.21i)3-s + (−0.896 + 2.04i)5-s + 0.663i·7-s + (1.45 − 2.52i)9-s − 1.80·11-s + (−1.99 − 1.15i)13-s + (−0.603 − 5.40i)15-s + (3.77 − 2.18i)17-s + (−4.21 − 1.12i)19-s + (−0.806 − 1.39i)21-s + (−1.81 − 1.04i)23-s + (−3.39 − 3.67i)25-s − 0.216i·27-s + (0.974 − 1.68i)29-s − 9.52·31-s + ⋯ |
L(s) = 1 | + (−1.21 + 0.701i)3-s + (−0.400 + 0.916i)5-s + 0.250i·7-s + (0.485 − 0.840i)9-s − 0.545·11-s + (−0.553 − 0.319i)13-s + (−0.155 − 1.39i)15-s + (0.915 − 0.528i)17-s + (−0.966 − 0.257i)19-s + (−0.176 − 0.304i)21-s + (−0.378 − 0.218i)23-s + (−0.678 − 0.734i)25-s − 0.0416i·27-s + (0.180 − 0.313i)29-s − 1.71·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 + 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0470151 - 0.131872i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0470151 - 0.131872i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.896 - 2.04i)T \) |
| 19 | \( 1 + (4.21 + 1.12i)T \) |
good | 3 | \( 1 + (2.10 - 1.21i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 0.663iT - 7T^{2} \) |
| 11 | \( 1 + 1.80T + 11T^{2} \) |
| 13 | \( 1 + (1.99 + 1.15i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.77 + 2.18i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.81 + 1.04i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.974 + 1.68i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.52T + 31T^{2} \) |
| 37 | \( 1 - 2.97iT - 37T^{2} \) |
| 41 | \( 1 + (0.247 + 0.428i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.81 - 3.93i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.69 - 3.28i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.99 + 1.15i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.88 - 6.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.36 - 9.28i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.96 + 2.29i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.95 + 5.12i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.86 + 2.80i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.99 + 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.20iT - 83T^{2} \) |
| 89 | \( 1 + (6.65 - 11.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.80 - 5.08i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.80415061911390980795224256444, −10.81501601694884199154037133466, −10.43896150726540553629854866949, −9.507340170437555619128347911458, −8.061378931870304542991207746626, −7.09338714295945418943334621143, −6.01245019565096508603976655972, −5.20084756599284850669856325259, −4.08549535062064024043736979931, −2.69994968101884903226148800544,
0.10608152359283939629935958254, 1.68342370282315517606062473142, 3.88900575550033213541481173408, 5.13698824227386351897729653588, 5.80517895089577710049221950951, 7.01952786335891260073852850453, 7.80671943571863126885995834856, 8.848757127648844401136933817675, 10.09737099572610926727205004801, 10.98274443534007831243573148631