L(s) = 1 | + (−2.10 − 1.21i)3-s + (−0.896 − 2.04i)5-s − 0.663i·7-s + (1.45 + 2.52i)9-s − 1.80·11-s + (−1.99 + 1.15i)13-s + (−0.603 + 5.40i)15-s + (3.77 + 2.18i)17-s + (−4.21 + 1.12i)19-s + (−0.806 + 1.39i)21-s + (−1.81 + 1.04i)23-s + (−3.39 + 3.67i)25-s + 0.216i·27-s + (0.974 + 1.68i)29-s − 9.52·31-s + ⋯ |
L(s) = 1 | + (−1.21 − 0.701i)3-s + (−0.400 − 0.916i)5-s − 0.250i·7-s + (0.485 + 0.840i)9-s − 0.545·11-s + (−0.553 + 0.319i)13-s + (−0.155 + 1.39i)15-s + (0.915 + 0.528i)17-s + (−0.966 + 0.257i)19-s + (−0.176 + 0.304i)21-s + (−0.378 + 0.218i)23-s + (−0.678 + 0.734i)25-s + 0.0416i·27-s + (0.180 + 0.313i)29-s − 1.71·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0470151 + 0.131872i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0470151 + 0.131872i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.896 + 2.04i)T \) |
| 19 | \( 1 + (4.21 - 1.12i)T \) |
good | 3 | \( 1 + (2.10 + 1.21i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 0.663iT - 7T^{2} \) |
| 11 | \( 1 + 1.80T + 11T^{2} \) |
| 13 | \( 1 + (1.99 - 1.15i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.77 - 2.18i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.81 - 1.04i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.974 - 1.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.52T + 31T^{2} \) |
| 37 | \( 1 + 2.97iT - 37T^{2} \) |
| 41 | \( 1 + (0.247 - 0.428i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.81 + 3.93i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.69 + 3.28i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.99 - 1.15i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.88 + 6.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.36 + 9.28i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.96 - 2.29i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.95 - 5.12i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.86 - 2.80i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.99 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.20iT - 83T^{2} \) |
| 89 | \( 1 + (6.65 + 11.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.80 + 5.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98274443534007831243573148631, −10.09737099572610926727205004801, −8.848757127648844401136933817675, −7.80671943571863126885995834856, −7.01952786335891260073852850453, −5.80517895089577710049221950951, −5.13698824227386351897729653588, −3.88900575550033213541481173408, −1.68342370282315517606062473142, −0.10608152359283939629935958254,
2.69994968101884903226148800544, 4.08549535062064024043736979931, 5.20084756599284850669856325259, 6.01245019565096508603976655972, 7.09338714295945418943334621143, 8.061378931870304542991207746626, 9.507340170437555619128347911458, 10.43896150726540553629854866949, 10.81501601694884199154037133466, 11.80415061911390980795224256444