L(s) = 1 | + (2.10 + 1.21i)3-s + (2.22 − 0.248i)5-s + 0.663i·7-s + (1.45 + 2.52i)9-s − 1.80·11-s + (1.99 − 1.15i)13-s + (4.98 + 2.17i)15-s + (−3.77 − 2.18i)17-s + (−4.21 + 1.12i)19-s + (−0.806 + 1.39i)21-s + (1.81 − 1.04i)23-s + (4.87 − 1.10i)25-s − 0.216i·27-s + (0.974 + 1.68i)29-s − 9.52·31-s + ⋯ |
L(s) = 1 | + (1.21 + 0.701i)3-s + (0.993 − 0.111i)5-s + 0.250i·7-s + (0.485 + 0.840i)9-s − 0.545·11-s + (0.553 − 0.319i)13-s + (1.28 + 0.562i)15-s + (−0.915 − 0.528i)17-s + (−0.966 + 0.257i)19-s + (−0.176 + 0.304i)21-s + (0.378 − 0.218i)23-s + (0.975 − 0.220i)25-s − 0.0416i·27-s + (0.180 + 0.313i)29-s − 1.71·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.833 - 0.551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.833 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.08808 + 0.628495i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08808 + 0.628495i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.22 + 0.248i)T \) |
| 19 | \( 1 + (4.21 - 1.12i)T \) |
good | 3 | \( 1 + (-2.10 - 1.21i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 0.663iT - 7T^{2} \) |
| 11 | \( 1 + 1.80T + 11T^{2} \) |
| 13 | \( 1 + (-1.99 + 1.15i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.77 + 2.18i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.81 + 1.04i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.974 - 1.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.52T + 31T^{2} \) |
| 37 | \( 1 - 2.97iT - 37T^{2} \) |
| 41 | \( 1 + (0.247 - 0.428i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.81 - 3.93i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.69 - 3.28i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.99 + 1.15i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.88 + 6.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.36 + 9.28i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.96 + 2.29i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.95 - 5.12i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.86 + 2.80i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.99 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.20iT - 83T^{2} \) |
| 89 | \( 1 + (6.65 + 11.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.80 - 5.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08669421224391066431967933307, −10.38036763875119817925337661890, −9.406459411310919909309359048075, −8.881630220323243713367486687588, −8.063801680810099890073397383119, −6.67530199676204948986279764549, −5.51709094044718382638520913769, −4.39239642933472719546595964786, −3.07998716683768140261406548209, −2.10159418239739150371534021794,
1.76592786295930629640494553001, 2.63348939751206352004634743565, 4.03426716157377352136936476448, 5.60735839019227620504379153768, 6.70700675055409471729868417968, 7.51164420430907569169241021070, 8.744696531950349262089813472700, 9.035148931466335181556993848275, 10.36058118846403999286749943950, 11.05253470891881854782435189465