L(s) = 1 | + (1.74 + 1.00i)3-s + (0.0408 + 2.23i)5-s − 1.34i·7-s + (0.526 + 0.912i)9-s + 5.25·11-s + (−2.10 + 1.21i)13-s + (−2.17 + 3.93i)15-s + (1.17 + 0.679i)17-s + (2.89 + 3.25i)19-s + (1.35 − 2.34i)21-s + (−7.05 + 4.07i)23-s + (−4.99 + 0.182i)25-s − 3.91i·27-s + (−1.03 − 1.79i)29-s − 0.513·31-s + ⋯ |
L(s) = 1 | + (1.00 + 0.581i)3-s + (0.0182 + 0.999i)5-s − 0.507i·7-s + (0.175 + 0.304i)9-s + 1.58·11-s + (−0.584 + 0.337i)13-s + (−0.562 + 1.01i)15-s + (0.285 + 0.164i)17-s + (0.664 + 0.746i)19-s + (0.295 − 0.511i)21-s + (−1.47 + 0.849i)23-s + (−0.999 + 0.0365i)25-s − 0.754i·27-s + (−0.192 − 0.333i)29-s − 0.0921·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.574 - 0.818i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.574 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68207 + 0.874053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68207 + 0.874053i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.0408 - 2.23i)T \) |
| 19 | \( 1 + (-2.89 - 3.25i)T \) |
good | 3 | \( 1 + (-1.74 - 1.00i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 1.34iT - 7T^{2} \) |
| 11 | \( 1 - 5.25T + 11T^{2} \) |
| 13 | \( 1 + (2.10 - 1.21i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.17 - 0.679i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (7.05 - 4.07i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.03 + 1.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.513T + 31T^{2} \) |
| 37 | \( 1 + 5.57iT - 37T^{2} \) |
| 41 | \( 1 + (-2.70 + 4.68i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (11.0 + 6.36i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.82 + 1.63i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.1 + 5.88i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.0175 + 0.0304i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.518 - 0.897i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.664 + 0.383i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.68 + 9.84i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.86 + 1.07i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.48 - 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.20iT - 83T^{2} \) |
| 89 | \( 1 + (3.65 + 6.32i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.721 - 0.416i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.56744638222884979817657292054, −10.21816321134354162082571450801, −9.780310399752036250004066459477, −8.887323089996859075869025406721, −7.74540754807614489866083193287, −6.92724519588910304116003140350, −5.81033969968730870409708126402, −3.88644479274332996043337154379, −3.66951061486645135449630445292, −2.07212380285677557416276171305,
1.39904924003395641531675599451, 2.71301223118659166404111143894, 4.11941726757174274441908858717, 5.32880105059124455595004827104, 6.57020639400897560512110829158, 7.70300639819021440179626666950, 8.514965984842025364853789277724, 9.153263336977056690925548537231, 9.935702399010335634185902982145, 11.61699976546072852727225602338