L(s) = 1 | + (−1.74 − 1.00i)3-s + (−1.95 + 1.08i)5-s + 1.34i·7-s + (0.526 + 0.912i)9-s + 5.25·11-s + (2.10 − 1.21i)13-s + (4.50 + 0.0822i)15-s + (−1.17 − 0.679i)17-s + (2.89 + 3.25i)19-s + (1.35 − 2.34i)21-s + (7.05 − 4.07i)23-s + (2.65 − 4.23i)25-s + 3.91i·27-s + (−1.03 − 1.79i)29-s − 0.513·31-s + ⋯ |
L(s) = 1 | + (−1.00 − 0.581i)3-s + (−0.875 + 0.484i)5-s + 0.507i·7-s + (0.175 + 0.304i)9-s + 1.58·11-s + (0.584 − 0.337i)13-s + (1.16 + 0.0212i)15-s + (−0.285 − 0.164i)17-s + (0.664 + 0.746i)19-s + (0.295 − 0.511i)21-s + (1.47 − 0.849i)23-s + (0.531 − 0.847i)25-s + 0.754i·27-s + (−0.192 − 0.333i)29-s − 0.0921·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.899106 - 0.0563908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.899106 - 0.0563908i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.95 - 1.08i)T \) |
| 19 | \( 1 + (-2.89 - 3.25i)T \) |
good | 3 | \( 1 + (1.74 + 1.00i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 1.34iT - 7T^{2} \) |
| 11 | \( 1 - 5.25T + 11T^{2} \) |
| 13 | \( 1 + (-2.10 + 1.21i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.17 + 0.679i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-7.05 + 4.07i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.03 + 1.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.513T + 31T^{2} \) |
| 37 | \( 1 - 5.57iT - 37T^{2} \) |
| 41 | \( 1 + (-2.70 + 4.68i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-11.0 - 6.36i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.82 - 1.63i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (10.1 - 5.88i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.0175 + 0.0304i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.518 - 0.897i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.664 - 0.383i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.68 + 9.84i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.86 - 1.07i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.48 - 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4.20iT - 83T^{2} \) |
| 89 | \( 1 + (3.65 + 6.32i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.721 + 0.416i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28812617464874641927231614396, −10.96879629552311339454562033142, −9.448328590342305717088542439941, −8.524214528812439555757712691320, −7.32866751673510685025462448404, −6.54086334516579087287576956235, −5.80903020374455358777655620120, −4.38830834554357136867977614630, −3.15019967042056028089860046756, −1.06212632974668678391865638699,
0.999266177710867797089584562262, 3.63351675432247709955212822178, 4.41114992012521602393177064466, 5.38430700249703087770852142658, 6.60588511468281602664363413336, 7.46856717480719950137523753400, 8.859626112428125202445723692267, 9.439927944660633529534608732620, 10.90420536882423885482724663883, 11.25344720130282063652976717588