L(s) = 1 | + (−1.08 − 0.628i)3-s + (1.87 + 1.21i)5-s + 4.97i·7-s + (−0.710 − 1.23i)9-s − 3.85·11-s + (−2.31 + 1.33i)13-s + (−1.27 − 2.50i)15-s + (2.24 + 1.29i)17-s + (1.24 + 4.17i)19-s + (3.12 − 5.40i)21-s + (−1.88 + 1.08i)23-s + (2.03 + 4.56i)25-s + 5.55i·27-s + (1.29 + 2.24i)29-s + 7.76·31-s + ⋯ |
L(s) = 1 | + (−0.628 − 0.362i)3-s + (0.838 + 0.544i)5-s + 1.87i·7-s + (−0.236 − 0.410i)9-s − 1.16·11-s + (−0.641 + 0.370i)13-s + (−0.329 − 0.646i)15-s + (0.544 + 0.314i)17-s + (0.285 + 0.958i)19-s + (0.681 − 1.18i)21-s + (−0.392 + 0.226i)23-s + (0.406 + 0.913i)25-s + 1.06i·27-s + (0.240 + 0.416i)29-s + 1.39·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0736 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0736 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.728530 + 0.676718i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.728530 + 0.676718i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.87 - 1.21i)T \) |
| 19 | \( 1 + (-1.24 - 4.17i)T \) |
good | 3 | \( 1 + (1.08 + 0.628i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 4.97iT - 7T^{2} \) |
| 11 | \( 1 + 3.85T + 11T^{2} \) |
| 13 | \( 1 + (2.31 - 1.33i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.24 - 1.29i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.88 - 1.08i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.29 - 2.24i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.76T + 31T^{2} \) |
| 37 | \( 1 + 2.75iT - 37T^{2} \) |
| 41 | \( 1 + (-3.66 + 6.34i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.55 + 0.895i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.47 - 0.854i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.89 + 3.98i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.127 - 0.220i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.66 + 2.88i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (11.4 - 6.60i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.85 + 6.68i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.90 - 2.25i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.52 + 9.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.04iT - 83T^{2} \) |
| 89 | \( 1 + (-4.76 - 8.24i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.72 - 5.61i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89000361617272561176568355215, −10.64558955005081185419049488393, −9.782187698594586462991576760786, −8.920154731330314931096952540670, −7.82810000986406700274501900525, −6.52740641503429896803588988245, −5.73683274305792977027166334302, −5.26587526378660974043846227902, −3.04448121980068715635201647680, −2.05240980621990106348122609772,
0.70454421196439246041845360178, 2.72772657548768367804931676165, 4.55506764750059884157072740405, 5.03721966257160814802122489450, 6.21803455344517086747172534724, 7.43843121302215155717526498935, 8.187775393460634230796994154941, 9.782270092283400300246902929627, 10.22141685586888992385181900840, 10.85584310195013625914832795527