Properties

Label 2-380-380.7-c1-0-51
Degree 22
Conductor 380380
Sign 0.9960.0862i-0.996 - 0.0862i
Analytic cond. 3.034313.03431
Root an. cond. 1.741921.74192
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.33 + 0.470i)2-s + (0.879 − 3.28i)3-s + (1.55 − 1.25i)4-s + (−1.53 − 1.62i)5-s + (0.372 + 4.79i)6-s + (−1.21 + 1.21i)7-s + (−1.48 + 2.40i)8-s + (−7.40 − 4.27i)9-s + (2.81 + 1.44i)10-s − 2.37i·11-s + (−2.75 − 6.21i)12-s + (0.816 + 3.04i)13-s + (1.05 − 2.19i)14-s + (−6.68 + 3.61i)15-s + (0.847 − 3.90i)16-s + (0.0115 − 0.0430i)17-s + ⋯
L(s)  = 1  + (−0.942 + 0.332i)2-s + (0.507 − 1.89i)3-s + (0.778 − 0.627i)4-s + (−0.686 − 0.726i)5-s + (0.151 + 1.95i)6-s + (−0.460 + 0.460i)7-s + (−0.525 + 0.851i)8-s + (−2.46 − 1.42i)9-s + (0.889 + 0.456i)10-s − 0.716i·11-s + (−0.794 − 1.79i)12-s + (0.226 + 0.845i)13-s + (0.280 − 0.587i)14-s + (−1.72 + 0.932i)15-s + (0.211 − 0.977i)16-s + (0.00279 − 0.0104i)17-s + ⋯

Functional equation

Λ(s)=(380s/2ΓC(s)L(s)=((0.9960.0862i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0862i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(380s/2ΓC(s+1/2)L(s)=((0.9960.0862i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 - 0.0862i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 380380    =    225192^{2} \cdot 5 \cdot 19
Sign: 0.9960.0862i-0.996 - 0.0862i
Analytic conductor: 3.034313.03431
Root analytic conductor: 1.741921.74192
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ380(7,)\chi_{380} (7, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 380, ( :1/2), 0.9960.0862i)(2,\ 380,\ (\ :1/2),\ -0.996 - 0.0862i)

Particular Values

L(1)L(1) \approx 0.0260188+0.602005i0.0260188 + 0.602005i
L(12)L(\frac12) \approx 0.0260188+0.602005i0.0260188 + 0.602005i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.330.470i)T 1 + (1.33 - 0.470i)T
5 1+(1.53+1.62i)T 1 + (1.53 + 1.62i)T
19 1+(3.17+2.98i)T 1 + (-3.17 + 2.98i)T
good3 1+(0.879+3.28i)T+(2.591.5i)T2 1 + (-0.879 + 3.28i)T + (-2.59 - 1.5i)T^{2}
7 1+(1.211.21i)T7iT2 1 + (1.21 - 1.21i)T - 7iT^{2}
11 1+2.37iT11T2 1 + 2.37iT - 11T^{2}
13 1+(0.8163.04i)T+(11.2+6.5i)T2 1 + (-0.816 - 3.04i)T + (-11.2 + 6.5i)T^{2}
17 1+(0.0115+0.0430i)T+(14.78.5i)T2 1 + (-0.0115 + 0.0430i)T + (-14.7 - 8.5i)T^{2}
23 1+(3.190.857i)T+(19.911.5i)T2 1 + (3.19 - 0.857i)T + (19.9 - 11.5i)T^{2}
29 1+(4.142.39i)T+(14.5+25.1i)T2 1 + (-4.14 - 2.39i)T + (14.5 + 25.1i)T^{2}
31 1+4.08iT31T2 1 + 4.08iT - 31T^{2}
37 1+(1.111.11i)T+37iT2 1 + (-1.11 - 1.11i)T + 37iT^{2}
41 1+(4.95+8.58i)T+(20.5+35.5i)T2 1 + (4.95 + 8.58i)T + (-20.5 + 35.5i)T^{2}
43 1+(1.25+4.66i)T+(37.221.5i)T2 1 + (-1.25 + 4.66i)T + (-37.2 - 21.5i)T^{2}
47 1+(1.09+4.09i)T+(40.7+23.5i)T2 1 + (1.09 + 4.09i)T + (-40.7 + 23.5i)T^{2}
53 1+(2.09+7.81i)T+(45.8+26.5i)T2 1 + (2.09 + 7.81i)T + (-45.8 + 26.5i)T^{2}
59 1+(7.40+12.8i)T+(29.5+51.0i)T2 1 + (7.40 + 12.8i)T + (-29.5 + 51.0i)T^{2}
61 1+(3.966.87i)T+(30.552.8i)T2 1 + (3.96 - 6.87i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.0397+0.148i)T+(58.0+33.5i)T2 1 + (0.0397 + 0.148i)T + (-58.0 + 33.5i)T^{2}
71 1+(0.923+0.533i)T+(35.561.4i)T2 1 + (-0.923 + 0.533i)T + (35.5 - 61.4i)T^{2}
73 1+(0.02870.00770i)T+(63.2+36.5i)T2 1 + (-0.0287 - 0.00770i)T + (63.2 + 36.5i)T^{2}
79 1+(1.121.94i)T+(39.5+68.4i)T2 1 + (-1.12 - 1.94i)T + (-39.5 + 68.4i)T^{2}
83 1+(2.412.41i)T+83iT2 1 + (-2.41 - 2.41i)T + 83iT^{2}
89 1+(0.155+0.0894i)T+(44.5+77.0i)T2 1 + (0.155 + 0.0894i)T + (44.5 + 77.0i)T^{2}
97 1+(2.93+10.9i)T+(84.048.5i)T2 1 + (-2.93 + 10.9i)T + (-84.0 - 48.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.22860520737384328151196950121, −9.399596928173644675528431467707, −8.742801898660484091952078414269, −8.148343037487158344204611078609, −7.26327028550210309538823182323, −6.50162404492681779012602709143, −5.55016499914139517290648536686, −3.19014789879144986663607785687, −1.83770393051102254542198286697, −0.49857177944703565805652804982, 2.84822498522227346372614603919, 3.51120153861646813885310626175, 4.51384623225561592297486247531, 6.17169073460534192065214028669, 7.64451426352718351021111632058, 8.247752898137590718873585911163, 9.385420234874435917788900330701, 10.16790740454723707674075970105, 10.43942835298322908961546517975, 11.35559209850301583238452859219

Graph of the ZZ-function along the critical line