Properties

Label 2-380-380.347-c1-0-51
Degree $2$
Conductor $380$
Sign $-0.805 + 0.592i$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 + 0.525i)2-s + (1.78 − 1.24i)3-s + (1.44 − 1.38i)4-s + (−1.31 − 1.80i)5-s + (−1.68 + 2.57i)6-s + (−4.05 − 1.08i)7-s + (−1.17 + 2.57i)8-s + (0.595 − 1.63i)9-s + (2.67 + 1.67i)10-s + (0.636 + 0.367i)11-s + (0.857 − 4.26i)12-s + (−3.61 − 2.53i)13-s + (5.89 − 0.704i)14-s + (−4.60 − 1.57i)15-s + (0.189 − 3.99i)16-s + (−3.04 − 1.41i)17-s + ⋯
L(s)  = 1  + (−0.928 + 0.371i)2-s + (1.02 − 0.721i)3-s + (0.723 − 0.690i)4-s + (−0.589 − 0.807i)5-s + (−0.687 + 1.05i)6-s + (−1.53 − 0.410i)7-s + (−0.415 + 0.909i)8-s + (0.198 − 0.545i)9-s + (0.847 + 0.530i)10-s + (0.191 + 0.110i)11-s + (0.247 − 1.23i)12-s + (−1.00 − 0.702i)13-s + (1.57 − 0.188i)14-s + (−1.18 − 0.407i)15-s + (0.0474 − 0.998i)16-s + (−0.737 − 0.343i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 + 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $-0.805 + 0.592i$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{380} (347, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ -0.805 + 0.592i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.186029 - 0.566885i\)
\(L(\frac12)\) \(\approx\) \(0.186029 - 0.566885i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.31 - 0.525i)T \)
5 \( 1 + (1.31 + 1.80i)T \)
19 \( 1 + (2.00 - 3.87i)T \)
good3 \( 1 + (-1.78 + 1.24i)T + (1.02 - 2.81i)T^{2} \)
7 \( 1 + (4.05 + 1.08i)T + (6.06 + 3.5i)T^{2} \)
11 \( 1 + (-0.636 - 0.367i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (3.61 + 2.53i)T + (4.44 + 12.2i)T^{2} \)
17 \( 1 + (3.04 + 1.41i)T + (10.9 + 13.0i)T^{2} \)
23 \( 1 + (-7.79 - 0.682i)T + (22.6 + 3.99i)T^{2} \)
29 \( 1 + (-2.65 + 7.28i)T + (-22.2 - 18.6i)T^{2} \)
31 \( 1 + (2.23 - 1.29i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (4.73 + 4.73i)T + 37iT^{2} \)
41 \( 1 + (-1.21 + 6.91i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (0.898 + 10.2i)T + (-42.3 + 7.46i)T^{2} \)
47 \( 1 + (1.71 - 0.799i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (-0.729 + 8.33i)T + (-52.1 - 9.20i)T^{2} \)
59 \( 1 + (-5.52 + 2.01i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-5.21 + 4.37i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (-3.86 + 1.80i)T + (43.0 - 51.3i)T^{2} \)
71 \( 1 + (-1.55 + 1.85i)T + (-12.3 - 69.9i)T^{2} \)
73 \( 1 + (2.94 + 4.20i)T + (-24.9 + 68.5i)T^{2} \)
79 \( 1 + (0.591 - 3.35i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-0.616 + 2.30i)T + (-71.8 - 41.5i)T^{2} \)
89 \( 1 + (2.79 - 0.492i)T + (83.6 - 30.4i)T^{2} \)
97 \( 1 + (-1.00 - 0.467i)T + (62.3 + 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70362575290514223096319867887, −9.706273111144207075640243700934, −9.014399068105937389065743117871, −8.249688324139695481187182180373, −7.30634200002726075792635486956, −6.80431014720395537091737499151, −5.31127441906196180787252760542, −3.54267724728866999721453773838, −2.28081551727147519608470485358, −0.44192338082384651105616566934, 2.72201834204752333312779379966, 3.08146140654581727984418291495, 4.29982485111115288201489650921, 6.63887176805471675015131138226, 6.97300640982304906837933526833, 8.422524058060973111050556752654, 9.134902486314382262952774572329, 9.677749576197397871260519647204, 10.56734120730854053272768248736, 11.44440445158164584696813396057

Graph of the $Z$-function along the critical line