Properties

Label 2-380-380.279-c1-0-44
Degree $2$
Conductor $380$
Sign $-0.316 + 0.948i$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.110i)2-s + (1.13 − 3.11i)3-s + (1.97 + 0.311i)4-s + (2.00 + 0.995i)5-s + (−1.93 + 4.26i)6-s + (0.450 − 0.779i)7-s + (−2.75 − 0.657i)8-s + (−6.09 − 5.11i)9-s + (−2.71 − 1.62i)10-s + (3.06 − 1.76i)11-s + (3.20 − 5.79i)12-s + (−1.01 + 0.370i)13-s + (−0.720 + 1.04i)14-s + (5.36 − 5.10i)15-s + (3.80 + 1.23i)16-s + (1.43 + 1.70i)17-s + ⋯
L(s)  = 1  + (−0.996 − 0.0780i)2-s + (0.653 − 1.79i)3-s + (0.987 + 0.155i)4-s + (0.895 + 0.445i)5-s + (−0.791 + 1.73i)6-s + (0.170 − 0.294i)7-s + (−0.972 − 0.232i)8-s + (−2.03 − 1.70i)9-s + (−0.857 − 0.513i)10-s + (0.922 − 0.532i)11-s + (0.925 − 1.67i)12-s + (−0.282 + 0.102i)13-s + (−0.192 + 0.280i)14-s + (1.38 − 1.31i)15-s + (0.951 + 0.307i)16-s + (0.347 + 0.414i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $-0.316 + 0.948i$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{380} (279, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ -0.316 + 0.948i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.733607 - 1.01771i\)
\(L(\frac12)\) \(\approx\) \(0.733607 - 1.01771i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.40 + 0.110i)T \)
5 \( 1 + (-2.00 - 0.995i)T \)
19 \( 1 + (1.70 - 4.01i)T \)
good3 \( 1 + (-1.13 + 3.11i)T + (-2.29 - 1.92i)T^{2} \)
7 \( 1 + (-0.450 + 0.779i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-3.06 + 1.76i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (1.01 - 0.370i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-1.43 - 1.70i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-1.21 + 6.91i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-3.03 + 3.61i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (0.929 - 1.61i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 7.38T + 37T^{2} \)
41 \( 1 + (2.47 - 6.78i)T + (-31.4 - 26.3i)T^{2} \)
43 \( 1 + (-0.0887 - 0.503i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-0.0815 - 0.0684i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (0.189 - 1.07i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (3.26 - 2.74i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-0.0866 + 0.491i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-0.183 + 0.219i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (2.58 + 14.6i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (3.01 - 8.28i)T + (-55.9 - 46.9i)T^{2} \)
79 \( 1 + (-15.6 - 5.67i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (2.81 - 4.87i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (3.62 + 9.95i)T + (-68.1 + 57.2i)T^{2} \)
97 \( 1 + (10.6 - 8.90i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05390326394032425114492162115, −10.04758477188063965721238481291, −8.937294366674604885703275962371, −8.332646373722448202926187190484, −7.38135900493106909835840311724, −6.49383718261716827563417487828, −6.08665016432188560161834203116, −3.25882737529989674581781881220, −2.14676326266713261845937200440, −1.17915010564109517304703464564, 2.07207330003830446111993966678, 3.35292211968035839389661694351, 4.84285016507159164223214984058, 5.63988143939171570069852491753, 7.12186628781780390987795413022, 8.553727614409577110925186394952, 9.054241594876983704378078278899, 9.659379702601496302036284946090, 10.28982891233318760316406717780, 11.20519418388558025616655538213

Graph of the $Z$-function along the critical line