Properties

Label 2-380-380.263-c1-0-48
Degree $2$
Conductor $380$
Sign $-0.394 + 0.918i$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.07 + 0.913i)2-s + (1.40 − 3.00i)3-s + (0.330 − 1.97i)4-s + (−0.494 − 2.18i)5-s + (1.23 + 4.52i)6-s + (0.431 − 1.61i)7-s + (1.44 + 2.43i)8-s + (−5.12 − 6.11i)9-s + (2.52 + 1.90i)10-s + (3.75 + 2.16i)11-s + (−5.45 − 3.75i)12-s + (0.629 + 1.35i)13-s + (1.00 + 2.13i)14-s + (−7.24 − 1.56i)15-s + (−3.78 − 1.30i)16-s + (4.32 − 0.378i)17-s + ⋯
L(s)  = 1  + (−0.763 + 0.645i)2-s + (0.808 − 1.73i)3-s + (0.165 − 0.986i)4-s + (−0.221 − 0.975i)5-s + (0.502 + 1.84i)6-s + (0.163 − 0.609i)7-s + (0.510 + 0.859i)8-s + (−1.70 − 2.03i)9-s + (0.798 + 0.601i)10-s + (1.13 + 0.653i)11-s + (−1.57 − 1.08i)12-s + (0.174 + 0.374i)13-s + (0.268 + 0.570i)14-s + (−1.86 − 0.404i)15-s + (−0.945 − 0.326i)16-s + (1.04 − 0.0917i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $-0.394 + 0.918i$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{380} (263, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ -0.394 + 0.918i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.653678 - 0.992156i\)
\(L(\frac12)\) \(\approx\) \(0.653678 - 0.992156i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.07 - 0.913i)T \)
5 \( 1 + (0.494 + 2.18i)T \)
19 \( 1 + (2.54 - 3.54i)T \)
good3 \( 1 + (-1.40 + 3.00i)T + (-1.92 - 2.29i)T^{2} \)
7 \( 1 + (-0.431 + 1.61i)T + (-6.06 - 3.5i)T^{2} \)
11 \( 1 + (-3.75 - 2.16i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.629 - 1.35i)T + (-8.35 + 9.95i)T^{2} \)
17 \( 1 + (-4.32 + 0.378i)T + (16.7 - 2.95i)T^{2} \)
23 \( 1 + (-2.23 - 1.56i)T + (7.86 + 21.6i)T^{2} \)
29 \( 1 + (3.40 + 4.06i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (4.96 - 2.86i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.395 + 0.395i)T - 37iT^{2} \)
41 \( 1 + (-4.98 + 1.81i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (-3.23 - 4.61i)T + (-14.7 + 40.4i)T^{2} \)
47 \( 1 + (-5.38 - 0.471i)T + (46.2 + 8.16i)T^{2} \)
53 \( 1 + (-0.0428 + 0.0611i)T + (-18.1 - 49.8i)T^{2} \)
59 \( 1 + (2.70 + 2.27i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (2.32 + 13.1i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-10.6 - 0.933i)T + (65.9 + 11.6i)T^{2} \)
71 \( 1 + (-2.88 - 0.508i)T + (66.7 + 24.2i)T^{2} \)
73 \( 1 + (3.30 + 1.54i)T + (46.9 + 55.9i)T^{2} \)
79 \( 1 + (8.70 - 3.16i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (-9.12 - 2.44i)T + (71.8 + 41.5i)T^{2} \)
89 \( 1 + (0.716 - 1.96i)T + (-68.1 - 57.2i)T^{2} \)
97 \( 1 + (8.89 - 0.777i)T + (95.5 - 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21699846952721469464903322538, −9.555313083544710436496939027731, −9.030108196252172748111715764354, −8.029320543697515184054563622846, −7.53821993912104695064330350210, −6.68972860517198895032310353181, −5.69178513478680865296411493207, −3.95627635837101964386303873959, −1.83624302311020420903182416533, −1.02884999794887746376477885530, 2.51888592802322690591586174888, 3.39672323459557058084248439109, 4.13333486034858643769102431254, 5.72644679070827582002637566452, 7.32992754303284876333278870156, 8.465771547864175075487799771040, 9.031695686102398305023612808911, 9.770663113783895110290321936598, 10.80387993051160335745039643800, 11.03934223025147422213567563054

Graph of the $Z$-function along the critical line