L(s) = 1 | + (0.00522 + 1.41i)2-s + (−0.212 − 0.212i)3-s + (−1.99 + 0.0147i)4-s + (2.19 + 0.442i)5-s + (0.299 − 0.301i)6-s + (2.65 − 2.65i)7-s + (−0.0313 − 2.82i)8-s − 2.90i·9-s + (−0.614 + 3.10i)10-s − 2.04i·11-s + (0.428 + 0.422i)12-s + (−0.226 + 0.226i)13-s + (3.76 + 3.73i)14-s + (−0.371 − 0.560i)15-s + (3.99 − 0.0590i)16-s + (−3.06 − 3.06i)17-s + ⋯ |
L(s) = 1 | + (0.00369 + 0.999i)2-s + (−0.122 − 0.122i)3-s + (−0.999 + 0.00738i)4-s + (0.980 + 0.198i)5-s + (0.122 − 0.123i)6-s + (1.00 − 1.00i)7-s + (−0.0110 − 0.999i)8-s − 0.969i·9-s + (−0.194 + 0.980i)10-s − 0.616i·11-s + (0.123 + 0.121i)12-s + (−0.0627 + 0.0627i)13-s + (1.00 + 0.998i)14-s + (−0.0960 − 0.144i)15-s + (0.999 − 0.0147i)16-s + (−0.742 − 0.742i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.935 - 0.353i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.935 - 0.353i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.44869 + 0.264787i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44869 + 0.264787i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.00522 - 1.41i)T \) |
| 5 | \( 1 + (-2.19 - 0.442i)T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + (0.212 + 0.212i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.65 + 2.65i)T - 7iT^{2} \) |
| 11 | \( 1 + 2.04iT - 11T^{2} \) |
| 13 | \( 1 + (0.226 - 0.226i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.06 + 3.06i)T + 17iT^{2} \) |
| 23 | \( 1 + (-5.40 - 5.40i)T + 23iT^{2} \) |
| 29 | \( 1 - 6.50iT - 29T^{2} \) |
| 31 | \( 1 - 5.78iT - 31T^{2} \) |
| 37 | \( 1 + (6.86 + 6.86i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.57T + 41T^{2} \) |
| 43 | \( 1 + (3.72 + 3.72i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.24 + 1.24i)T - 47iT^{2} \) |
| 53 | \( 1 + (6.74 - 6.74i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.42T + 59T^{2} \) |
| 61 | \( 1 - 0.777T + 61T^{2} \) |
| 67 | \( 1 + (5.08 - 5.08i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.53iT - 71T^{2} \) |
| 73 | \( 1 + (7.28 - 7.28i)T - 73iT^{2} \) |
| 79 | \( 1 - 16.5T + 79T^{2} \) |
| 83 | \( 1 + (-4.29 - 4.29i)T + 83iT^{2} \) |
| 89 | \( 1 + 8.74iT - 89T^{2} \) |
| 97 | \( 1 + (2.60 + 2.60i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20953041303300564211823801398, −10.45635574996576975006157986980, −9.252705224087780417103677095217, −8.745544674186159893174900023046, −7.28491460328674645897124053255, −6.85060995064821828608783670052, −5.66332514922330071375487513019, −4.81446837882916299210688668557, −3.46107214866014154328518810539, −1.17938467907745452505685139845,
1.84136418841460399033346053627, 2.48211652558656640106902862573, 4.57208243150057167315974954831, 5.07238422375536720288456803354, 6.20098852138631547169874387309, 8.015398437136431482656754143422, 8.709590443927153530972489336924, 9.612009327974462432388719268479, 10.54263034831409201220307700481, 11.17222595252699647976376611743