Properties

Label 2-380-20.7-c1-0-18
Degree $2$
Conductor $380$
Sign $-0.384 - 0.923i$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 1.22i)2-s + (1.27 + 1.27i)3-s + (−0.999 + 1.73i)4-s + (2.08 − 0.796i)5-s + (−0.658 + 2.45i)6-s + (−0.691 + 0.691i)7-s + (−2.82 + 8.52e−5i)8-s + 0.236i·9-s + (2.45 + 1.99i)10-s + 2.48i·11-s + (−3.47 + 0.931i)12-s + (0.299 − 0.299i)13-s + (−1.33 − 0.357i)14-s + (3.67 + 1.64i)15-s + (−2.00 − 3.46i)16-s + (1.98 + 1.98i)17-s + ⋯
L(s)  = 1  + (0.500 + 0.866i)2-s + (0.734 + 0.734i)3-s + (−0.499 + 0.866i)4-s + (0.934 − 0.356i)5-s + (−0.268 + 1.00i)6-s + (−0.261 + 0.261i)7-s + (−0.999 + 3.01e−5i)8-s + 0.0789i·9-s + (0.775 + 0.631i)10-s + 0.748i·11-s + (−1.00 + 0.268i)12-s + (0.0830 − 0.0830i)13-s + (−0.356 − 0.0956i)14-s + (0.947 + 0.424i)15-s + (−0.500 − 0.866i)16-s + (0.482 + 0.482i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $-0.384 - 0.923i$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{380} (267, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ -0.384 - 0.923i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24509 + 1.86667i\)
\(L(\frac12)\) \(\approx\) \(1.24509 + 1.86667i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 1.22i)T \)
5 \( 1 + (-2.08 + 0.796i)T \)
19 \( 1 + T \)
good3 \( 1 + (-1.27 - 1.27i)T + 3iT^{2} \)
7 \( 1 + (0.691 - 0.691i)T - 7iT^{2} \)
11 \( 1 - 2.48iT - 11T^{2} \)
13 \( 1 + (-0.299 + 0.299i)T - 13iT^{2} \)
17 \( 1 + (-1.98 - 1.98i)T + 17iT^{2} \)
23 \( 1 + (3.56 + 3.56i)T + 23iT^{2} \)
29 \( 1 + 5.50iT - 29T^{2} \)
31 \( 1 - 1.55iT - 31T^{2} \)
37 \( 1 + (-1.57 - 1.57i)T + 37iT^{2} \)
41 \( 1 + 8.98T + 41T^{2} \)
43 \( 1 + (0.612 + 0.612i)T + 43iT^{2} \)
47 \( 1 + (-7.25 + 7.25i)T - 47iT^{2} \)
53 \( 1 + (-0.698 + 0.698i)T - 53iT^{2} \)
59 \( 1 - 6.30T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 + (-9.08 + 9.08i)T - 67iT^{2} \)
71 \( 1 - 7.70iT - 71T^{2} \)
73 \( 1 + (1.79 - 1.79i)T - 73iT^{2} \)
79 \( 1 + 0.823T + 79T^{2} \)
83 \( 1 + (0.768 + 0.768i)T + 83iT^{2} \)
89 \( 1 - 10.3iT - 89T^{2} \)
97 \( 1 + (5.43 + 5.43i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05553056646812849203216366752, −10.25759631743574236382197694834, −9.664086662724068595995399697778, −8.816930952796405060814418059263, −8.100258255679373959431396842504, −6.70450216462106369449369511986, −5.86220851551598108569814971388, −4.75899594962197810064080617836, −3.79614583254999020142791854020, −2.47930522564159955647573433959, 1.46502965733793423285164248367, 2.61118381058720801161073901120, 3.53918429518041660228184216009, 5.19311114946996707799261784929, 6.15141263548677046820705505092, 7.21911972334797264266798407062, 8.490144068053819715146048710925, 9.377607284980288097937065966688, 10.25808299559732704367200832375, 11.04036146942142814777647117460

Graph of the $Z$-function along the critical line