L(s) = 1 | + (0.707 + 1.22i)2-s + (1.27 + 1.27i)3-s + (−0.999 + 1.73i)4-s + (2.08 − 0.796i)5-s + (−0.658 + 2.45i)6-s + (−0.691 + 0.691i)7-s + (−2.82 + 8.52e−5i)8-s + 0.236i·9-s + (2.45 + 1.99i)10-s + 2.48i·11-s + (−3.47 + 0.931i)12-s + (0.299 − 0.299i)13-s + (−1.33 − 0.357i)14-s + (3.67 + 1.64i)15-s + (−2.00 − 3.46i)16-s + (1.98 + 1.98i)17-s + ⋯ |
L(s) = 1 | + (0.500 + 0.866i)2-s + (0.734 + 0.734i)3-s + (−0.499 + 0.866i)4-s + (0.934 − 0.356i)5-s + (−0.268 + 1.00i)6-s + (−0.261 + 0.261i)7-s + (−0.999 + 3.01e−5i)8-s + 0.0789i·9-s + (0.775 + 0.631i)10-s + 0.748i·11-s + (−1.00 + 0.268i)12-s + (0.0830 − 0.0830i)13-s + (−0.356 − 0.0956i)14-s + (0.947 + 0.424i)15-s + (−0.500 − 0.866i)16-s + (0.482 + 0.482i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24509 + 1.86667i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24509 + 1.86667i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 1.22i)T \) |
| 5 | \( 1 + (-2.08 + 0.796i)T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + (-1.27 - 1.27i)T + 3iT^{2} \) |
| 7 | \( 1 + (0.691 - 0.691i)T - 7iT^{2} \) |
| 11 | \( 1 - 2.48iT - 11T^{2} \) |
| 13 | \( 1 + (-0.299 + 0.299i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.98 - 1.98i)T + 17iT^{2} \) |
| 23 | \( 1 + (3.56 + 3.56i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.50iT - 29T^{2} \) |
| 31 | \( 1 - 1.55iT - 31T^{2} \) |
| 37 | \( 1 + (-1.57 - 1.57i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.98T + 41T^{2} \) |
| 43 | \( 1 + (0.612 + 0.612i)T + 43iT^{2} \) |
| 47 | \( 1 + (-7.25 + 7.25i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.698 + 0.698i)T - 53iT^{2} \) |
| 59 | \( 1 - 6.30T + 59T^{2} \) |
| 61 | \( 1 + 10.9T + 61T^{2} \) |
| 67 | \( 1 + (-9.08 + 9.08i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.70iT - 71T^{2} \) |
| 73 | \( 1 + (1.79 - 1.79i)T - 73iT^{2} \) |
| 79 | \( 1 + 0.823T + 79T^{2} \) |
| 83 | \( 1 + (0.768 + 0.768i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.3iT - 89T^{2} \) |
| 97 | \( 1 + (5.43 + 5.43i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05553056646812849203216366752, −10.25759631743574236382197694834, −9.664086662724068595995399697778, −8.816930952796405060814418059263, −8.100258255679373959431396842504, −6.70450216462106369449369511986, −5.86220851551598108569814971388, −4.75899594962197810064080617836, −3.79614583254999020142791854020, −2.47930522564159955647573433959,
1.46502965733793423285164248367, 2.61118381058720801161073901120, 3.53918429518041660228184216009, 5.19311114946996707799261784929, 6.15141263548677046820705505092, 7.21911972334797264266798407062, 8.490144068053819715146048710925, 9.377607284980288097937065966688, 10.25808299559732704367200832375, 11.04036146942142814777647117460