Properties

Label 2-380-1.1-c1-0-3
Degree $2$
Conductor $380$
Sign $1$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.73·3-s + 5-s + 2·7-s + 4.46·9-s − 3.46·11-s − 2.73·13-s + 2.73·15-s − 3.46·17-s + 19-s + 5.46·21-s − 3.46·23-s + 25-s + 3.99·27-s + 3.46·29-s − 1.46·31-s − 9.46·33-s + 2·35-s + 6.73·37-s − 7.46·39-s − 6·41-s − 4.92·43-s + 4.46·45-s + 12.9·47-s − 3·49-s − 9.46·51-s − 10.7·53-s − 3.46·55-s + ⋯
L(s)  = 1  + 1.57·3-s + 0.447·5-s + 0.755·7-s + 1.48·9-s − 1.04·11-s − 0.757·13-s + 0.705·15-s − 0.840·17-s + 0.229·19-s + 1.19·21-s − 0.722·23-s + 0.200·25-s + 0.769·27-s + 0.643·29-s − 0.262·31-s − 1.64·33-s + 0.338·35-s + 1.10·37-s − 1.19·39-s − 0.937·41-s − 0.751·43-s + 0.665·45-s + 1.88·47-s − 0.428·49-s − 1.32·51-s − 1.47·53-s − 0.467·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.313081407\)
\(L(\frac12)\) \(\approx\) \(2.313081407\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - 2.73T + 3T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
13 \( 1 + 2.73T + 13T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 + 1.46T + 31T^{2} \)
37 \( 1 - 6.73T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 4.92T + 43T^{2} \)
47 \( 1 - 12.9T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 - 6.92T + 59T^{2} \)
61 \( 1 - 12.3T + 61T^{2} \)
67 \( 1 - 6.73T + 67T^{2} \)
71 \( 1 + 2.53T + 71T^{2} \)
73 \( 1 + 0.535T + 73T^{2} \)
79 \( 1 - 2.92T + 79T^{2} \)
83 \( 1 - 3.46T + 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.24458296164480425319556749824, −10.16504772441996179259738013179, −9.483940699053012872537189687096, −8.425170139690295072472280641962, −7.933651046001422676992367948173, −6.91665718516314033151540346617, −5.34029417693935189242495196863, −4.26524606504058423658859734907, −2.81262026871803154044574947246, −2.00908948934280587162148736490, 2.00908948934280587162148736490, 2.81262026871803154044574947246, 4.26524606504058423658859734907, 5.34029417693935189242495196863, 6.91665718516314033151540346617, 7.933651046001422676992367948173, 8.425170139690295072472280641962, 9.483940699053012872537189687096, 10.16504772441996179259738013179, 11.24458296164480425319556749824

Graph of the $Z$-function along the critical line