Properties

Label 2-38-19.17-c3-0-0
Degree $2$
Conductor $38$
Sign $-0.979 + 0.202i$
Analytic cond. $2.24207$
Root an. cond. $1.49735$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.347 + 1.96i)2-s + (−3.39 − 2.85i)3-s + (−3.75 − 1.36i)4-s + (−20.2 + 7.35i)5-s + (6.79 − 5.70i)6-s + (2.98 + 5.17i)7-s + (4 − 6.92i)8-s + (−1.26 − 7.19i)9-s + (−7.46 − 42.3i)10-s + (−13.0 + 22.5i)11-s + (8.87 + 15.3i)12-s + (14.6 − 12.3i)13-s + (−11.2 + 4.08i)14-s + (89.6 + 32.6i)15-s + (12.2 + 10.2i)16-s + (−6.72 + 38.1i)17-s + ⋯
L(s)  = 1  + (−0.122 + 0.696i)2-s + (−0.654 − 0.549i)3-s + (−0.469 − 0.171i)4-s + (−1.80 + 0.657i)5-s + (0.462 − 0.388i)6-s + (0.161 + 0.279i)7-s + (0.176 − 0.306i)8-s + (−0.0469 − 0.266i)9-s + (−0.236 − 1.33i)10-s + (−0.357 + 0.618i)11-s + (0.213 + 0.369i)12-s + (0.313 − 0.262i)13-s + (−0.214 + 0.0780i)14-s + (1.54 + 0.561i)15-s + (0.191 + 0.160i)16-s + (−0.0959 + 0.544i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 + 0.202i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.979 + 0.202i$
Analytic conductor: \(2.24207\)
Root analytic conductor: \(1.49735\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :3/2),\ -0.979 + 0.202i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0155557 - 0.151987i\)
\(L(\frac12)\) \(\approx\) \(0.0155557 - 0.151987i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.347 - 1.96i)T \)
19 \( 1 + (24.7 - 79.0i)T \)
good3 \( 1 + (3.39 + 2.85i)T + (4.68 + 26.5i)T^{2} \)
5 \( 1 + (20.2 - 7.35i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (-2.98 - 5.17i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (13.0 - 22.5i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-14.6 + 12.3i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (6.72 - 38.1i)T + (-4.61e3 - 1.68e3i)T^{2} \)
23 \( 1 + (174. + 63.6i)T + (9.32e3 + 7.82e3i)T^{2} \)
29 \( 1 + (17.6 + 100. i)T + (-2.29e4 + 8.34e3i)T^{2} \)
31 \( 1 + (19.6 + 33.9i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 418.T + 5.06e4T^{2} \)
41 \( 1 + (-269. - 225. i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 + (-130. + 47.5i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (-49.1 - 278. i)T + (-9.75e4 + 3.55e4i)T^{2} \)
53 \( 1 + (200. + 73.0i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (90.6 - 514. i)T + (-1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (-6.86 - 2.49i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (-133. - 755. i)T + (-2.82e5 + 1.02e5i)T^{2} \)
71 \( 1 + (61.3 - 22.3i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + (719. + 603. i)T + (6.75e4 + 3.83e5i)T^{2} \)
79 \( 1 + (-320. - 268. i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (-94.7 - 164. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (-304. + 255. i)T + (1.22e5 - 6.94e5i)T^{2} \)
97 \( 1 + (-18.8 + 106. i)T + (-8.57e5 - 3.12e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24380315384971790599858786621, −15.35767554275643540346245048855, −14.53331975278621971243737615545, −12.55541998411578965306278524267, −11.82451416770356270994167974007, −10.49982336067883044804667801747, −8.318171674416600245048526293544, −7.39137399885387814934146026565, −6.11956848942464035214048820937, −4.02614759346624285681550504345, 0.14511110962621855211362447819, 3.84227121714096546829117485068, 5.01636241489927416261819341144, 7.66521568328970731217594330650, 8.841579787063588309550801271846, 10.71439125202591375611475344599, 11.39798275770990449144606633664, 12.33357413336461970221316362219, 13.81890544768169657079167234539, 15.73957415297467884066600901680

Graph of the $Z$-function along the critical line