L(s) = 1 | + 2-s + 4-s + (1.5 + 2.59i)5-s + (−2 + 1.73i)7-s + 8-s + (1.5 + 2.59i)10-s + (−1.5 + 2.59i)11-s + (0.5 − 0.866i)13-s + (−2 + 1.73i)14-s + 16-s + (1.5 + 2.59i)17-s + (3.5 − 6.06i)19-s + (1.5 + 2.59i)20-s + (−1.5 + 2.59i)22-s + (−4.5 − 7.79i)23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (0.670 + 1.16i)5-s + (−0.755 + 0.654i)7-s + 0.353·8-s + (0.474 + 0.821i)10-s + (−0.452 + 0.783i)11-s + (0.138 − 0.240i)13-s + (−0.534 + 0.462i)14-s + 0.250·16-s + (0.363 + 0.630i)17-s + (0.802 − 1.39i)19-s + (0.335 + 0.580i)20-s + (−0.319 + 0.553i)22-s + (−0.938 − 1.62i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85110 + 0.953883i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85110 + 0.953883i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2 - 1.73i)T \) |
good | 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + (-1.5 - 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + (5.5 + 9.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 16T + 79T^{2} \) |
| 83 | \( 1 + (4.5 + 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63142723850638055649090829029, −10.36785429474014655716130418144, −10.12129034070783833462590717176, −8.805620007560151480059951310191, −7.41660624080009576011790407789, −6.51363568889788329378031811003, −5.88717189604746363667709496205, −4.62300575707966355902197951268, −3.04840906576683980501656936420, −2.39765642057837759521115600740,
1.27850408908858898470121758468, 3.11563751589217092738468726414, 4.24600647409874965225879461691, 5.50504203684900015512796753427, 6.02736319945167863271170682712, 7.42306523483932211464784717123, 8.376924833528792729177956035729, 9.689956666291715631542457653511, 10.07696488686269583473884902051, 11.51312794726508477628680139939