L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 3.69·5-s + (−1.40 + 2.24i)7-s − 0.999·8-s + (−1.84 + 3.20i)10-s + 1.47·11-s + (−1.34 + 2.33i)13-s + (1.23 + 2.33i)14-s + (−0.5 + 0.866i)16-s + (−3.28 + 5.69i)17-s + (−0.444 − 0.769i)19-s + (1.84 + 3.20i)20-s + (0.738 − 1.27i)22-s − 6.28·23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s − 1.65·5-s + (−0.531 + 0.847i)7-s − 0.353·8-s + (−0.584 + 1.01i)10-s + 0.445·11-s + (−0.374 + 0.648i)13-s + (0.331 + 0.624i)14-s + (−0.125 + 0.216i)16-s + (−0.797 + 1.38i)17-s + (−0.101 − 0.176i)19-s + (0.413 + 0.716i)20-s + (0.157 − 0.272i)22-s − 1.31·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.176644 + 0.265016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.176644 + 0.265016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.40 - 2.24i)T \) |
good | 5 | \( 1 + 3.69T + 5T^{2} \) |
| 11 | \( 1 - 1.47T + 11T^{2} \) |
| 13 | \( 1 + (1.34 - 2.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.28 - 5.69i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.444 + 0.769i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 6.28T + 23T^{2} \) |
| 29 | \( 1 + (1.25 + 2.17i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.40 + 5.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.38 + 2.40i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.05 + 3.56i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.00618 - 0.0107i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.49 - 6.05i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.60 + 2.78i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.45 - 5.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.86 + 4.96i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.73 - 8.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.46T + 71T^{2} \) |
| 73 | \( 1 + (6.03 - 10.4i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.72 - 9.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.23 + 3.87i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.43 - 7.68i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.58 + 11.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63756469043483530331648021055, −11.13843277666932521664536189027, −9.890412894623869916762191150990, −8.881897089032190985018288300206, −8.103095588703118388048706954031, −6.86987546305376445864445973712, −5.80955431381666998116031309575, −4.26052969464787512768980660732, −3.77386079925759843084940529891, −2.24540187874159578509297673622,
0.18354262588459638198337137142, 3.22108177328684493248796902058, 4.05456007907721597273083467716, 4.98839035718988539228843506352, 6.57772862997252882010510051345, 7.30141824165643325311456520881, 7.974415821032843342033107441566, 9.019696297029729287670606218584, 10.21190423521122778084985605934, 11.28909498426578132684761425009