Properties

Label 2-378-27.13-c1-0-8
Degree $2$
Conductor $378$
Sign $0.993 + 0.116i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (−1.70 + 0.300i)3-s + (−0.939 + 0.342i)4-s + (−1.03 − 0.866i)5-s + (−0.592 − 1.62i)6-s + (−0.939 − 0.342i)7-s + (−0.5 − 0.866i)8-s + (2.81 − 1.02i)9-s + (0.673 − 1.16i)10-s + (3.64 − 3.05i)11-s + (1.49 − 0.866i)12-s + (0.266 − 1.50i)13-s + (0.173 − 0.984i)14-s + (2.02 + 1.16i)15-s + (0.766 − 0.642i)16-s + (−1.11 + 1.92i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (−0.984 + 0.173i)3-s + (−0.469 + 0.171i)4-s + (−0.461 − 0.387i)5-s + (−0.241 − 0.664i)6-s + (−0.355 − 0.129i)7-s + (−0.176 − 0.306i)8-s + (0.939 − 0.342i)9-s + (0.213 − 0.368i)10-s + (1.09 − 0.922i)11-s + (0.433 − 0.249i)12-s + (0.0737 − 0.418i)13-s + (0.0464 − 0.263i)14-s + (0.521 + 0.301i)15-s + (0.191 − 0.160i)16-s + (−0.270 + 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.993 + 0.116i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.993 + 0.116i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.871721 - 0.0507719i\)
\(L(\frac12)\) \(\approx\) \(0.871721 - 0.0507719i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
3 \( 1 + (1.70 - 0.300i)T \)
7 \( 1 + (0.939 + 0.342i)T \)
good5 \( 1 + (1.03 + 0.866i)T + (0.868 + 4.92i)T^{2} \)
11 \( 1 + (-3.64 + 3.05i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (-0.266 + 1.50i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (1.11 - 1.92i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.79 - 4.84i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-7.57 + 2.75i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.85 + 10.5i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-1.37 + 0.502i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-0.815 + 1.41i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.75 + 9.97i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (6.70 - 5.63i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-8.35 - 3.03i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 1.32T + 53T^{2} \)
59 \( 1 + (7.16 + 6.01i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-3.08 - 1.12i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (0.470 - 2.66i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (2.10 - 3.64i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (4.54 + 7.87i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-0.556 - 3.15i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (2.22 + 12.6i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (0.779 + 1.35i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (9.91 - 8.31i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.47620145947200787826983742815, −10.47502985172644888923077277655, −9.454610451456002526289722313124, −8.496728257358985066141139419258, −7.44727101291300540171248202030, −6.33094094610710624952731851290, −5.77420506695725453505405418021, −4.48056608614308113383340474784, −3.63334277362969873672709770248, −0.75551355626911789136133263968, 1.36587140397128264326838243014, 3.16563681769817311945100985196, 4.44483479195359510960871454432, 5.33058048778540071897575458397, 6.89997068848061516252607600840, 7.10996443877423341199700773964, 9.028039381733479485965923485953, 9.624311882683919499542113070624, 10.82561694135699951935131934885, 11.42910366964784561219462478145

Graph of the $Z$-function along the critical line