L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.866 − 1.5i)5-s + (2 − 1.73i)7-s + 0.999i·8-s + (1.5 − 0.866i)10-s + (2.59 − 0.499i)14-s + (−0.5 + 0.866i)16-s + (−1.73 − 3i)17-s + (6 + 3.46i)19-s + 1.73·20-s + (−5.19 − 3i)23-s + (1 + 1.73i)25-s + (2.49 + 0.866i)28-s + 9i·29-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.387 − 0.670i)5-s + (0.755 − 0.654i)7-s + 0.353i·8-s + (0.474 − 0.273i)10-s + (0.694 − 0.133i)14-s + (−0.125 + 0.216i)16-s + (−0.420 − 0.727i)17-s + (1.37 + 0.794i)19-s + 0.387·20-s + (−1.08 − 0.625i)23-s + (0.200 + 0.346i)25-s + (0.472 + 0.163i)28-s + 1.67i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.11940 + 0.0671812i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.11940 + 0.0671812i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 5 | \( 1 + (-0.866 + 1.5i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + (1.73 + 3i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6 - 3.46i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.19 + 3i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 9iT - 29T^{2} \) |
| 31 | \( 1 + (-3 + 1.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.46T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (1.73 - 3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.59 - 1.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.06 + 10.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 - 1.73i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7 + 12.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6iT - 71T^{2} \) |
| 73 | \( 1 + (10.5 - 6.06i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.5 - 9.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.3T + 83T^{2} \) |
| 89 | \( 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58581344562692100209151232561, −10.52984251731754702015359603858, −9.511942941367668005154788584297, −8.413153416934157637785576654959, −7.59090455383125247816478932374, −6.56359698330852523943630593997, −5.28318262389619172018236305331, −4.69961645524062533832628721809, −3.36073090217975545949937997347, −1.55177721551189855310407424136,
1.87964112982881891749086947556, 2.99044542318371344618484973509, 4.39005045929522300115716298579, 5.51232260619763605303286153358, 6.33363202206858744427286422153, 7.51552018699587945037862016351, 8.619447785236854367680274018152, 9.780871999835371775726955519410, 10.53121544419252486201399834854, 11.63958788032524503948841595735