L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (1.22 + 2.12i)5-s + (−1 + 2.44i)7-s − 0.999i·8-s + (2.12 + 1.22i)10-s + (3.67 + 2.12i)11-s − 0.717i·13-s + (0.358 + 2.62i)14-s + (−0.5 − 0.866i)16-s + (1.22 − 2.12i)17-s + (−4.24 + 2.44i)19-s + 2.44·20-s + 4.24·22-s + (5.19 − 3i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (0.547 + 0.948i)5-s + (−0.377 + 0.925i)7-s − 0.353i·8-s + (0.670 + 0.387i)10-s + (1.10 + 0.639i)11-s − 0.198i·13-s + (0.0958 + 0.700i)14-s + (−0.125 − 0.216i)16-s + (0.297 − 0.514i)17-s + (−0.973 + 0.561i)19-s + 0.547·20-s + 0.904·22-s + (1.08 − 0.625i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.259i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 - 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.02100 + 0.267049i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.02100 + 0.267049i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1 - 2.44i)T \) |
good | 5 | \( 1 + (-1.22 - 2.12i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.67 - 2.12i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.717iT - 13T^{2} \) |
| 17 | \( 1 + (-1.22 + 2.12i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.24 - 2.44i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.19 + 3i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.75iT - 29T^{2} \) |
| 31 | \( 1 + (7.86 + 4.54i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.62 + 4.54i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.44T + 41T^{2} \) |
| 43 | \( 1 - 7T + 43T^{2} \) |
| 47 | \( 1 + (-6.42 - 11.1i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (12.5 + 7.24i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.22 - 2.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.62 + 2.09i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.74 - 11.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.7iT - 71T^{2} \) |
| 73 | \( 1 + (4.75 + 2.74i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.378 + 0.655i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 15.2T + 83T^{2} \) |
| 89 | \( 1 + (-1.52 - 2.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3.16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39737431712904482963449389910, −10.63992321482116228109233128985, −9.641028168194390643250493815706, −8.973468778612372450212796162158, −7.34174595592807526606205457549, −6.39720074459873451046111595409, −5.73975589114932227377490824639, −4.33089915590753635755573465160, −3.04042345292778083799062935256, −2.04013866467793594819661442217,
1.37216278210050611772860377394, 3.40981879657180536897900609000, 4.39119045265655951491120401214, 5.47748161190858307956904507325, 6.48692310076617168282898950078, 7.32129762957018098599260972407, 8.731702260864713522446823821123, 9.215034580542152610879074388755, 10.53960807927572189458715691915, 11.37418486890661644057442616860