L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.866 − 1.5i)5-s + (2 + 1.73i)7-s + 0.999i·8-s + (1.5 + 0.866i)10-s + (−2.59 − 0.499i)14-s + (−0.5 − 0.866i)16-s + (1.73 − 3i)17-s + (6 − 3.46i)19-s − 1.73·20-s + (5.19 − 3i)23-s + (1 − 1.73i)25-s + (2.49 − 0.866i)28-s + 9i·29-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.387 − 0.670i)5-s + (0.755 + 0.654i)7-s + 0.353i·8-s + (0.474 + 0.273i)10-s + (−0.694 − 0.133i)14-s + (−0.125 − 0.216i)16-s + (0.420 − 0.727i)17-s + (1.37 − 0.794i)19-s − 0.387·20-s + (1.08 − 0.625i)23-s + (0.200 − 0.346i)25-s + (0.472 − 0.163i)28-s + 1.67i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05880 - 0.0335620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05880 - 0.0335620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 - 1.73i)T \) |
good | 5 | \( 1 + (0.866 + 1.5i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + (-1.73 + 3i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6 + 3.46i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.19 + 3i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 9iT - 29T^{2} \) |
| 31 | \( 1 + (-3 - 1.73i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.46T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (-1.73 - 3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.59 - 1.5i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.06 + 10.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 + 1.73i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7 - 12.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6iT - 71T^{2} \) |
| 73 | \( 1 + (10.5 + 6.06i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 17.3T + 83T^{2} \) |
| 89 | \( 1 + (-5.19 - 9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41018617605364707510784787189, −10.38734646896906585185035419191, −9.142547576293166681048685252984, −8.734347129133119504462833601153, −7.71448063706931187772708901243, −6.85379023139379107977577663993, −5.34664870189657118702090682954, −4.81150156294735924261369575910, −2.89445959942251126558372564709, −1.11252651786363796098363472928,
1.34662753892644284168327786454, 3.06461322576285006805933191516, 4.11426028708447273297881343025, 5.58817662056641939387521781205, 7.02690567356967042934842182194, 7.67208984679378121513037700085, 8.485060321652130728670686379942, 9.812513301735194813502052105993, 10.39108237792104813306345093477, 11.45766812145408592327141099710