Properties

Label 2-378-189.104-c1-0-10
Degree $2$
Conductor $378$
Sign $0.891 + 0.453i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.342 + 0.939i)2-s + (−1.59 − 0.667i)3-s + (−0.766 − 0.642i)4-s + (0.105 − 0.599i)5-s + (1.17 − 1.27i)6-s + (−1.41 + 2.23i)7-s + (0.866 − 0.500i)8-s + (2.11 + 2.13i)9-s + (0.527 + 0.304i)10-s + (0.824 − 0.145i)11-s + (0.795 + 1.53i)12-s + (−1.82 − 5.02i)13-s + (−1.61 − 2.09i)14-s + (−0.569 + 0.888i)15-s + (0.173 + 0.984i)16-s + (1.99 − 3.44i)17-s + ⋯
L(s)  = 1  + (−0.241 + 0.664i)2-s + (−0.922 − 0.385i)3-s + (−0.383 − 0.321i)4-s + (0.0472 − 0.268i)5-s + (0.479 − 0.520i)6-s + (−0.535 + 0.844i)7-s + (0.306 − 0.176i)8-s + (0.703 + 0.710i)9-s + (0.166 + 0.0962i)10-s + (0.248 − 0.0438i)11-s + (0.229 + 0.444i)12-s + (−0.507 − 1.39i)13-s + (−0.431 − 0.559i)14-s + (−0.146 + 0.229i)15-s + (0.0434 + 0.246i)16-s + (0.483 − 0.836i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.891 + 0.453i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.891 + 0.453i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (293, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.891 + 0.453i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.738794 - 0.177227i\)
\(L(\frac12)\) \(\approx\) \(0.738794 - 0.177227i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.342 - 0.939i)T \)
3 \( 1 + (1.59 + 0.667i)T \)
7 \( 1 + (1.41 - 2.23i)T \)
good5 \( 1 + (-0.105 + 0.599i)T + (-4.69 - 1.71i)T^{2} \)
11 \( 1 + (-0.824 + 0.145i)T + (10.3 - 3.76i)T^{2} \)
13 \( 1 + (1.82 + 5.02i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-1.99 + 3.44i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-5.27 + 3.04i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.49 + 4.16i)T + (-3.99 - 22.6i)T^{2} \)
29 \( 1 + (-3.34 + 9.19i)T + (-22.2 - 18.6i)T^{2} \)
31 \( 1 + (6.03 - 7.19i)T + (-5.38 - 30.5i)T^{2} \)
37 \( 1 + (4.69 - 8.13i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-7.99 + 2.90i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.298 + 1.69i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (2.01 - 1.68i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + 12.2iT - 53T^{2} \)
59 \( 1 + (1.06 - 6.03i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (1.15 + 1.37i)T + (-10.5 + 60.0i)T^{2} \)
67 \( 1 + (-5.12 + 1.86i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (-8.21 - 4.74i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-2.28 + 1.32i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (4.21 + 1.53i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (5.23 + 1.90i)T + (63.5 + 53.3i)T^{2} \)
89 \( 1 + (2.04 + 3.54i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.62 + 0.638i)T + (91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37280607948320536594591394941, −10.24467135857962508431509381958, −9.476317568834348850977394411473, −8.415839245982073126297613388988, −7.34497803414645409099484601620, −6.56578268102031059601411571513, −5.40303878382085079116609436362, −5.02461737795732742523668317746, −2.90788033199269302687051352359, −0.72389429884665458217321166856, 1.33117461695005676090141861187, 3.41016512951998973672842848155, 4.27024049990775477808509270066, 5.51581657365456340088775344423, 6.77441326151484224126704924115, 7.47291016063117792595183567741, 9.220782684869665500240202020725, 9.687528906907833872238926156007, 10.69491478778938432101311754665, 11.18676349501137991429499628580

Graph of the $Z$-function along the critical line