Properties

Label 2-3762-1.1-c1-0-62
Degree $2$
Conductor $3762$
Sign $-1$
Analytic cond. $30.0397$
Root an. cond. $5.48085$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 0.561·7-s + 8-s − 2·10-s − 11-s + 0.561·13-s − 0.561·14-s + 16-s + 0.561·17-s − 19-s − 2·20-s − 22-s − 1.43·23-s − 25-s + 0.561·26-s − 0.561·28-s + 5.68·29-s + 2·31-s + 32-s + 0.561·34-s + 1.12·35-s − 5.12·37-s − 38-s − 2·40-s − 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.894·5-s − 0.212·7-s + 0.353·8-s − 0.632·10-s − 0.301·11-s + 0.155·13-s − 0.150·14-s + 0.250·16-s + 0.136·17-s − 0.229·19-s − 0.447·20-s − 0.213·22-s − 0.299·23-s − 0.200·25-s + 0.110·26-s − 0.106·28-s + 1.05·29-s + 0.359·31-s + 0.176·32-s + 0.0963·34-s + 0.189·35-s − 0.842·37-s − 0.162·38-s − 0.316·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3762\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.0397\)
Root analytic conductor: \(5.48085\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3762,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 0.561T + 7T^{2} \)
13 \( 1 - 0.561T + 13T^{2} \)
17 \( 1 - 0.561T + 17T^{2} \)
23 \( 1 + 1.43T + 23T^{2} \)
29 \( 1 - 5.68T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 5.12T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 + 12.8T + 53T^{2} \)
59 \( 1 - 7.68T + 59T^{2} \)
61 \( 1 - 6.24T + 61T^{2} \)
67 \( 1 + 7.68T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 9.68T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 14.2T + 83T^{2} \)
89 \( 1 - 0.876T + 89T^{2} \)
97 \( 1 + 7.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.124004011098077547221534479895, −7.33151835395464245566134753164, −6.62023685926207321505333208385, −5.89946245015647303281298097223, −4.95769548942165425440900356970, −4.31864329565482504465931305608, −3.48600549216742341278472626342, −2.80830678216946578285391133527, −1.55993945373214683109310539871, 0, 1.55993945373214683109310539871, 2.80830678216946578285391133527, 3.48600549216742341278472626342, 4.31864329565482504465931305608, 4.95769548942165425440900356970, 5.89946245015647303281298097223, 6.62023685926207321505333208385, 7.33151835395464245566134753164, 8.124004011098077547221534479895

Graph of the $Z$-function along the critical line