| L(s) = 1 | + (0.587 − 0.809i)2-s + (0.951 − 0.309i)3-s + (0.309 + 0.951i)4-s + (0.309 − 0.951i)6-s + 4.47i·7-s + (2.85 + 0.927i)8-s + (0.809 − 0.587i)9-s + (−2.61 − 1.90i)11-s + (0.587 + 0.809i)12-s + (1.98 + 2.73i)13-s + (3.61 + 2.62i)14-s + (0.809 − 0.587i)16-s + (−2.71 − 0.881i)17-s − 0.999i·18-s + (1 − 3.07i)19-s + ⋯ |
| L(s) = 1 | + (0.415 − 0.572i)2-s + (0.549 − 0.178i)3-s + (0.154 + 0.475i)4-s + (0.126 − 0.388i)6-s + 1.69i·7-s + (1.00 + 0.327i)8-s + (0.269 − 0.195i)9-s + (−0.789 − 0.573i)11-s + (0.169 + 0.233i)12-s + (0.551 + 0.758i)13-s + (0.966 + 0.702i)14-s + (0.202 − 0.146i)16-s + (−0.658 − 0.213i)17-s − 0.235i·18-s + (0.229 − 0.706i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.113i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 375 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.113i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.08835 + 0.118904i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.08835 + 0.118904i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.951 + 0.309i)T \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.587 + 0.809i)T + (-0.618 - 1.90i)T^{2} \) |
| 7 | \( 1 - 4.47iT - 7T^{2} \) |
| 11 | \( 1 + (2.61 + 1.90i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-1.98 - 2.73i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.71 + 0.881i)T + (13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-1 + 3.07i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-2.62 + 3.61i)T + (-7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (1.35 + 4.16i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.23 + 6.88i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (4.75 + 6.54i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-1.11 + 0.812i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 5.70iT - 43T^{2} \) |
| 47 | \( 1 + (-4.97 + 1.61i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.31 + 0.427i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (3.23 - 2.35i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.363i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-4.97 - 1.61i)T + (54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (0.236 + 0.726i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (1.81 - 2.5i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (3.35 + 1.09i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-6.16 - 4.47i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (8.42 - 2.73i)T + (78.4 - 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52614889452672521733485048501, −10.84226022332848189271850419811, −9.320023949603302701683346145285, −8.678411546986845845122078811881, −7.86768326351568074952223064449, −6.61595137107513362568636493511, −5.41974301090736738399078334392, −4.18644551030163123263051204546, −2.80114168250959235066036832150, −2.24787356005077656924115650226,
1.41471885095522751821427263707, 3.39269652150154048344834074429, 4.47845220995514335667623601175, 5.41513356990203817475419675385, 6.81108536671810736494322676323, 7.39322049951702893843374504154, 8.315350733697980635283375912962, 9.768891227041784766949514277417, 10.50639634622107774757645511869, 10.88753781086447420701439775245